

lab_quacks: Spiteful Stacks,
Questionable Queues
Week #5 – September 26-28, 2019

Welcome to Lab Quacks!
Course Website: https://courses.engr.illinois.edu/cs225/fa2019

Overview
In this week’s lab, you will refresh your memory in an important
programming concept: recursion, and you will have a chance to
practice with two new data structures we learned in lecture: stacks
and queues.

Recursion
Recursion refers to a style of writing functions where: a function
calls itself within its definition. If you have already taken CS 125
or ECE 220 this will be a familiar topic for you. One advantage to
writing functions recursively is that more often than not, it makes
function definitions shorter, more elegant, and easier to follow for a
human reader. However, recursion often times trades runtime
efficiency for its sleek style; we must carefully decide when it is
advantageous to use recursion. Always remember that while not every
function can be written recursively, every recursive function can
be rewritten iteratively (using loops instead of recursion).

Exercise 1.1: The Fibonacci sequence start with 0 and 1: F0 = 0, F1=1.
The rule for the nth Fibonacci number is: Fn=Fn-1 + Fn-2. The iterative
function iterativeFib() has been provided for you. Complete the function
recursiveFib to calculate the nth Fibonacci number recursively.

main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13

int recursiveFib(int n){
 cout << "recursiveFib gets called!" << endl;

//YOUR CODE HERE
 if (n == 0 || n == 1)
 return n;
 return recursiveFib(n-1)+recursiveFib(n-2);

}

14
15
16
17
18
19
20
21
22
23
24
25
26

int iterativeFib(int n){
 int n0 = 1; int n1 = 1; int result = 1;
 for(int i = 2; i < n; i++) {
 cout << "one iteration!" << endl;
 result = n0 + n1; n0 = n1; n1 = result;
 }
 return result;
}

int main() {
 int recur = recursiveFib(4);
 int iter = iterativeFib(4);
}

Exercise 1.2:
In the main function, F4 gets computed by the two different algorithms.

How many print statements will be called in the recursive
algorithm? To better understand the number of recursion calls, draw
the recursion tree of recursiveFib(4) in the space below.

9 print statements will be called in recursiveFib(4).

How many print statements will be called in the iterative algorithm
to calculate the same result?
Iterative algorithm will print out 2 lines.

Fib(4)

Fib(3)

Fib(2)

Fib(1) Fib(0)

Fib(1)

Fib(2)

Fib(1) Fib(0)

Stack and Q
Stacks and queues are two of the most popular one-dimensional data
structures in CS. Remember from lecture that elements in a queue
follow the FIFO rule: First In First Out, while elements in a stack
follow the LIFO rule: Last In First Out. In this lab we will use the
STL’s (Standard Template Library) queue<T> and stack<T> classes.
Exercise 2.1: Complete the definitions of the following two
functions. popLast() takes in a queue by reference and pops out the
last element of the queue (at the back of the queue), the remaining
elements in the queue should maintain their initial order. reverseQ()
takes in a queue by reference and reverses the order of its elements.

Do not create new queues/stacks in your implementation!
(you can use the stack that is already give to you)

Useful stack and queue functions:
queue.front() stack.top()

push() pop() size()

main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

template <typename T>
void popLast(queue<T> &q){
 //YOUR CODE HERE
 size_t s = q.size();
 for (int i=0; i<s-1; i++){
 T temp = q.front();
 q.pop();
 q.push(temp);
 }
 q.pop();

}
template <typename T>
void reverseQ(queue<T> &q){
 stack<T> s;
 //YOUR CODE HERE
 while (!q.empty()){
 s.push(q.front());
 q.pop();
 }
 while(!s.empty()){
 q.push(s.top());
 s.pop();
 }
}

Time Complexity
Recall that in computer science we use Big O notation to describe the
runtimes of functions and programs. In Big O runtime analysis, n
usually denotes the size of the arguments/objects/variables/data
structures that the function or program manipulates. In the following
exercise, you will analyze and compare the run time of Stack and
Queue operations on elements in different positions.
Exercise 3: Looking at the main function below, write the time
complexities (in big O) of popping out the following elements.
1 on q O(1)
1 on s O(n)
n on q O(n)
n on s O(1)

main.cpp
1
2
3
4
5
6
7
8
9
10

int main() {
 queue<int> q;
 stack<int> s;

 for(int i = 1; i <=n; i++) {
 q.push(i);
 s.push(i);
 }
}

In the programming part of this lab, you will:

● Get familiar with Stacks and Queues
● Practice writing recursive functions
● Have fun solving clever Queue and Stack puzzle problems!

As your TA and CAs, we’re here to help with your

programming for the rest of this lab section! ☺

