

lab_memory: Malevolent Memories
Week #3 – September 11-13, 2019

Welcome to Lab Memory!
Course Website: https://courses.engr.illinois.edu/cs225/fa2019

Overview
In this week’s lab, you will learn about memory management: how to
allocate and de-allocate memory correctly in your program. You will
discover ways of memory management, and practice spotting memory
bugs in the code.

Destructors
Destructors (dtors) are special member functions of classes. They are
the opposite of constructors: their job is to release (de-allocate)
memory when an object of the class is no longer needed. Destructors
are automatically called when an object runs out of its scope; we never
explicitly call a destructor, instead it is implicitly called when we use
the keyword “delete” or when the lifetime of the object ends.

Exercise 1.1: Write the destructor for the Orchard class.
Exercise 1.2: On which line(s) will the destructors be called in
main.cpp (see next page)? ~Orchard: _______ ~Tree: _________

orchard.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

#pragma once
class Tree {
public:
 string fruitName;
 double yield;
};
class Orchard {
 public:
 static const int MAX_TREES = 500;
 Orchard();
 bool addTree(Tree& t);
 Orchard(const Orchard& other);
 Orchard& operator = (Orchard const & other);

 // YOUR CODE HERE
 private:
 int size_;
 Tree* trees_;
};

orchard.cpp

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

#include “orchard.h”

Orchard::Orchard() {
 size_ = 0;
 trees_ = new Tree[MAX_TREES];
}

bool Orchard::addTree(Tree& t) {
 if (size_ < MAX_TREES) {
 trees_[size_] = t;
 size_++;
 return true;
 } else {
 return false;
 }
}

Orchard::Orchard(const Orchard& other) {
 trees_ = new Tree[MAX_TREES];
 for (int i=0; i<other.size_; i++) {
 trees_[i] = other.trees_[i];
 }
 size_ = other.size_;
}

Orchard& Orchard::operator = (Orchard const & other)
{
 if(this != &other){
 for (int i=0; i<other.size_; i++) {
 this->trees_[i] = other.trees_[i];
 }
 this->size_ = other.size_;
 }
 return *this;
}
// YOUR CODE HERE: write the destructor

main.cpp

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

int main() {
 Tree *t1 = new Tree;
 t1->fruitName = "peach";
 t1->yield = 25;
 Tree *t2 = new Tree;
 t2->fruitName = "apple";
 t2->yield = 40;

 Orchard * myorchard = new Orchard();
 myorchard->addTree(*t1);
 myorchard->addTree(*t2);
 delete myorchard;
 delete t1;
 delete t2;
}

Memory Errors
Memory errors occur when memory access is mismanaged: some ways
it can occur are through: 1) invalid memory access in heap or stack, 2)
mismatched allocation/deallocation, or 3) missing allocation or
uninitialized variable access (e.g. dereferencing NULLs). Memory
errors often result in “segfaults” when the program is run.
Exercise 2.1: What will line 7 in main.cpp print out?

Exercise 2.2: A memory error will occur somewhere between lines
10 and 16. Find and correct this error.

main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

void func(int idx){
 HSLAPixel array[10];
 array[idx] = HSLAPixel(0,0,0);
}
int main() {
 for (int i=0; i<20; i++){
 std::cout<< i<< std::endl;
 func(i);
 }
 HSLAPixel * pix1 = new HSLAPixel();
 HSLAPixel * pix2 = new HSLAPixel();
 pix2 = pix1;
 delete pix1;
 delete pix2;
 return 0;
}

Memory Leaks
Memory leak is a type of Memory Error. Memory leaks most
commonly occur when heap memory is no longer needed but is not
correctly released (still reachable block), or when and object/variable
is stored in memory but cannot be accessed by the running code (lost
block). Memory leaks are often harder to detect than memory errors
as they won’t always cause an error at runtime. Debugging tools such
as Valgrind can help detect memory leaks.

Exercise 3: For each memory block allocated in the code below,
decide if it has been released correctly. If not, add code to correctly
release it.

main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14

int main(){
 int* arr = new int[10];
 int m = 300;
 arr[0] = m;
 PNG* image = new PNG(m,m);
 HSLAPixel& mypix = (*image).getPixel(150,150);
 // Clean up memory

}

In the programming part of this lab, you will:

● Learn about two memory debugging tools: Valgrind and ASAN
● Complete the given code for lab_memory
● Debug the given code by correcting memory errors and

memory leaks

As your TA and CAs, we’re here to help with your
programming for the rest of this lab section! ☺

