

lab_inheritance: Insidious Inheritance

Week #4 – September 18-20, 2019

Welcome to Lab Inheritance!
Course Website: https://courses.engr.illinois.edu/cs225/fa2019

Overview
In this week’s lab, you will gain experience with the concept of
inheritance. Inheritance in OOP is used when you want to extend a
base class to build other derived classes. Inheritance enables us to
write more flexible code with minimum code redundancy.

Derived From Base
A derived class is an extension of the base class. The derived class
inherits the member functions and member variables of the base class.
You are allowed to override functions given by the base class in the
derived class. The virtual keyword signals that if a derived version of
the function exists in the class; then it should be executed first. Pure
virtual functions in the base class must have an implementation in
the derived class.

Exercise 1: You are given the class Building as a base class for class
Apartment. Complete the implementation of Apartment by filling in the
.h and .cpp files. Pay close attention to virtual functions!

Building.h Building.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

#pragma once

class Building{
 public:
 Building(double ar,
string add);

 virtual void
setName(string n)=0;
//pure virtual function

 virtual string
getName();
 private:
 double _area;
 string _address;
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

#include “Building.h”

Building::Building(dou
ble ar, string add){
 _area = ar;
 _address = add;
}

string
Building::getName(){
 return “SIEBEL”;
}

Apartment.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

#pragma once

class Apartment : public Building{
 public:
 Apartment(double ar, string add, int c);
 bool addResidents(int r);
 //YOUR CODE HERE

private:
 string _name;
 int _capacity;
};

Apartment.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

#include “Apartment.h”

Apartment::Apartment(double ar, string add, int c)
: //YOUR CODE HERE
{
_name= ”ISR”;
 //YOUR CODE HERE
}
bool Apartment::addResidents(int r){
 if (_capacity - r >=0) {
 _capacity -= r;
 return true;
 } else {return false;}
}
//OVERRIDE ALL VIRTUAL FUNCTIONS BELOW:

Polymorphism
One of the key features of class inheritance is that a pointer to a
derived class is type-compatible with a pointer to its base class.
However, the opposite is not true; while an instance of a derived class
can be “polymorphed” into its base class, an instance of the base class
cannot be “polymorphed” into an instance of its derived classes.
Exercise 2.1: Which building initialization(s) will cause an error?

 building 1 2 3 4

Exercise 2.2: What would be printed in lines 11 through 14?

main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

int main() {
 Building* building1 = new Building(300, “306
Wright”);
 Building* building2 = new Apartment(200, “1111
Nevada”, 80);
 Apartment* building3 = new Apartment(250, “918
Illinois”, 500);
 Apartment* building4 = new Building(200, "201
Goodwin");

 std::cout<< building2->getName() <<std::endl;
 std::cout<< building3->getName() <<std::endl;
 building2->setName(“Busey Evans”);
 std::cout<< building2->getName() <<std::endl;

}

Virtual Destructors
When we have a base class pointer pointing to a derived class object,
the base class destructor is used to free the memory of the derived
class object. A memory leak may occur if the derived class has data
allocated on the heap using a member variable that was not given by
the base class. To fix the issue, the base class’s destructor should be a
virtual destructor.

Exercise 3.1: What will be printed out when main() is run?

Exercise 3.2: How would you fix this code so that no memory leak
happens? What will be printed out after the fix?

ab.h ab.cpp

1
2
3
4
5
6
7
8
9
10
11
12
13

class A {
 public:
 A(){
 cout<<"Ctor A ";
 }

 ~A(){
 cout<<"Dtor A ";
 }
};

14
15
16
17
18
19
20
21
22
23
24
25
26

class B : public A{
public:
 int *i;
 B():A(){
 cout<<"Ctor B ";
 i = new int;
 }
 ~B(){
 cout<<"Dtor B ";
 if(i != NULL){
 delete i;
 i = NULL;
}}};

main.cpp
1
2
3
4
5
6
7
8

int main(){
 A *a = new B();
 B *b = new B();
 cout << endl;

 delete a;
 delete b;
 return 0;
}

In the programming part of this lab, you will:

● Explore the classes: Drawable, Shape, Circle, Triangle, and
Rectangle, and discover how each fits in the inheritance
hierarchy.

● Produce drawings of Truck and Flower
As your TA and CAs, we’re here to help with your

programming for the rest of this lab section! ☺

