

Lab_btree: Belligerent B-trees
Week #9 – October 23 - 25, 2019

Welcome to Lab B-tree!
Course Website: https://courses.engr.illinois.edu/cs225/fa2019

Overview
In lecture, we saw that AVLs are efficient and useful when we need to
keep our data ordered. However, the downside is that the amount of
the data we can store in an AVL tree is bounded by the size of main
memory. When we have a large amount of data, we may not be able to
load it all in the main memory. In this case, we want to use B-trees. B-
trees are a versatile tree-based data structure, typically used to store
large amounts of data in disks.

B-tree of Order m:
Rules of a B-tree of order m:

● All keys within a node are ordered.
● All non-leaf nodes have one more child than keys.
● Root can have: [2, m] children and [1, m-1] keys
● All other internal nodes have [ceil(m/2), m] children.
● All non-root nodes have [ceil(m/2)-1, m-1] keys.

Exercise 1.1: What are the possible values of m if the following BTree
is of order m?
 ______17______
 / \
 __4____9__ _30______41__
 / | \ / | \
 1 3 6 8 10 24 25 33 35 56 80

To get our lower bound, we look at the nodes with
most children or most elements. We see that we have 2
nodes that have 3 children, and the most elements in
a node is 2. Thus we need m to be at least 3
otherwise the nodes with 3 children/2 elements will
not be legal.
To get our higher bound, we look at the node(s) with
the least number of elements/children. In our
example, we have a node with only 1 element (10),
thus we need ceil(m/2)-1 <= 1. M=3 and m=4 both

satisfy this condition, but m=5 makes ceil(5/2)-1 = 2
> 1, thus we can’t have m=5!
In conclusion:
m = 3 or 4
Exercise 1.2: Which B-tree is a valid B-tree? (there is only one
valid!) Why are the others invalid (what rules do they break)?

 C I _C E_ _D I_ _C F_
 / | \ / | \ / | \ / | \
AB F JK AB D FGHI B F J M AB DE GHI
 / \ / \ / \ | \
 DE GH A C E GH KL N

From left to right:

1) INVALID: all leaf nodes must be on the same
level.

2) INVALID: since there is a node with 4 elements
EFHI, m >= 5, but then the minimum number of
elements is ceil(5/2)-1 = 2, so we can’t have a
node with just one element D.

3) INVALID: node JM MUST have exactly 3 children,
not 2.

4) VALID: can be a B-tree of order m=4 or m=5.

Inserting Into a B-tree
Recall from lecture:

1. Always insert the new element into a leaf node.
2. If we have an overflow in a node after insertion; meaning it

has more than the maximum number of elements allowed: we
must split the node by throwing up the middle element to the
parent node.

Given the B-tree below: we want to insert the following elements in
this order [16, 17, 18, 19, 20]

 ___________21____________
 / \
 __4____9__ _12_ _30______41__
 / | \ \ / | \
 1 3 6 8 10 11 13 14 15 24 25 33 35 56 80 82

Exercise 2: Suppose the B-tree above is of order 5, how will it look
after inserting the elements? How many splits were performed?

 ______________12 21____________
 / | \
 _4__9___ ____15 18__ This branch
 / | \ / | \ same as before
1 3 6 8 10 11 13 14 16 17 19 20

3 splits were performed

B-tree Class Implementation:
This part of the worksheet will provide an overview of the code
structure of the btree class you will implement in the coding part of
this lab. Each element in a btree is of type DataPair. Elements are
ordered in the btree nodes according to the key in the DataPair. Each
BtreeNode has one boolean member variable is_leaf, and two
vectors: elements and children. Visually, a BTreeNode will look
like:

Exercise 3.1: Let K1 = 1, K2 = 5, and K3 = 10 in the above
illustration of a BTreeNode. Suppose we are searching for the
element with key = 7, which child pointer in the BTreeNode
should we follow? Give its index in the children vector.

index 2 in children vector:
5 < 7 < 10,
So we need child between 5 and 10:
(1 is index of 5 and since 5 < 7 we need child on
the right side of the 5, thus index 2)

Exercise 3.2: Suppose we need to split the BTreeNode above (so
we will throw up the element {K2, V2}), how would we split the
children vector between the newly created BTreeNodes after the
split? Draw the resulting BTreeNodes after the split:
Index of {k2 V2} elem is i = 1,

Parent node:
elements [{k2,V2}]
Children vector of size 2, pointing to children 1
and 2:
1. Elements= [{k1,V1}]
 Children= frist two elements of the previous
children vector
2. elements= [{k3,V3}]
 Children= last two elements of the previous
children vector

As your TA and CAs, we’re here to help with your
programming for the rest of this lab section! ☺

