

Lab_avl: Awful AVL Trees

Week #8 – October 16-18, 2019

Welcome to Lab AVL!
Course Website: https://courses.engr.illinois.edu/cs225/fa2019/

Overview
In this week’s lab you will work on implementing important features
for an AVL tree. An AVL tree is a dynamically balancing BST (Binary
Search Tree). It maintains a height of at most O(lg(n)) where n is the
number of nodes in the BST. This is important since the runtime of
searching for an element in a balanced BST is O(lg(n)).

AVL Tree Rotations
In lecture, you learned an AVL tree has four kinds of rotations that it
can perform in order to balance the tree: L, R, LR, and RL. Left (L)
and right (R) rotations are singular rotations used on “sticks” in order
to turn them into “mountains”. Left-right (LR) and right-left (RL)
rotations are combinations of the previous two rotations that are used
to turn “elbows” into “mountains”.

Exercise 1: Which type of rotation should be performed on each of
these subtrees?

Q1) Right Left Left-Right Right-Left
Q2) Root BF = -2 Root BF = 2 Root BF = -2 Root BF = 2
Q3) Child BF = -1 Child BF = 1 Child BF = 1 Child BF = -1

For each tree:
Q1: What type of rotation fixes each of these trees?
Q2: Identify the balance factor of the root node in each tree.
Q3: Identify the balance factor of the node below the root in each
tree.

Left Rotation
Let’s focus on writing the code for a single rotation

Exercise 2: Complete the pseudo-code for a left rotation

Initial structure: Q1: Source code to perform a left rotation

TreeNode *& t = /* point of imbalance */

TreeNode * y = t->right;
t->right = y->left;
y->left = t;
t = y;
Don’t forget to update the heights!

Q2: How does a right rotation differ?

Almost the same as the left pseudocode, just swap lefts and rights.

AVL Tree Insertion
Inserting into an AVL tree is very similar to the process of inserting
into a BST. The difference between the two is the insertion operation
of an AVL tree also rebalances the tree. The pseudocode was given in
class, so make sure to look back at your notes for understanding the
algorithm of inserting into an AVL Tree.

Exercise 3.1: For the AVL Tree below:
1. Insert the element 29.
2. After inserting, find the height for each of the nodes in the tree.
3. Identify the lowest point of imbalance: what is its balance

factor?

Add 29 as 37’s left child.
Heights: 29 -> 0, 58 -> 0, 17 -> 0, 37 -> 1, 45 -> 2, 25 -> 3
Lowest point of imbalance is 25 since height(45) – height(17) = 2

The following nodes are in the elbow: 25, 45, 37

Exercise 3.2: Based on the lowest point and its balance factor, and the
balance factor of its child node, what is the type or rotation that needs
to be used to rebalance the tree?

Rotation Type: Right-Left

Exercise 3.3: Draw the state of the tree after the rotation is done, and
it has been rebalanced.

Exercise 3.4: Fill out the worst-case running times for the following
operations when they are run on an unbalanced BST and an AVL Tree
assuming you have access to the root of the tree. There are n nodes in
the tree.

Operation Unbalanced BST AVL Tree
Printing the value of
the root node

O(1) O(1)

Searching for an
element

O(h)=O(n) O(h)=O(lg(n))

Printing the value of
each node in the tree

O(n) O(n)

Finding the node with
the largest value

O(h)=O(n) O(h)=O(lg(n))

In the programming part of this lab, you will:

● Get familiar with AVL Trees
● Practice writing the implementations of rotations
● Implement the functions to rebalance, insert, and remove an

AVL Tree
As your TA and CAs, we’re here to help with your

programming for the rest of this lab section! ☺

