CS 225

Data Structures

Dec. 11 — Floyd-Warshall’s Algorithm

Wade Fagen-Ulmschneider

Reinforcement Learning

Available Tokens
I TR e 1 token > 5

Take 2 tokens = 7
Take 2 tokens = 6
Take 1 token =» 6
Take 1 token =» 5

[T
(=]

n
1\ —
=
= ~
- o
- o
Q Q Q Q)
() () () ()

Reinforcement Learning

Mastering Chess and Shogi by Self-Play with a Last week, Google’s DeepMind Al
General Reinforcement Learning Algorithm !
team released a new research paper:

£ David Silver,'* Thomas Hubert,'* Julian Schrittwieser,'*

O loannis Amonoglou.l Matthew Lai,' Arthur Guez,! Marc Lanctot,’ .]]

PJ’ Laurent Sifre,! Dharshan Kumaran,' Thore Graepel,! o U S I n g re I nfO rce m e nt | e a r n I n g, a n

2 Timothy Lillicrap,' Karen Simonyan,! Demis Hassabis' . .

= algorithm knowing only the rules of

'DeepMind, 6 Pancras Square, London N1C 4AG.

*These authors contributed equally to this work. C h e S S t ra i n e d fo r 4 h O u rS .

Abstract

The game of chess is the most widely-studied domain in the history of artificial intel- o Afte r t ra i n i n g’ it d e St roye d t h e b e St

ligence. The strongest programs are based on a combination of sophisticated search tech-
niques, domain-specific adaptations, and handcrafted evaluation functions that have been M .
refined by human experts over several decades. In contrast, the AlphaGo Zero program C e S S p ro g ra m Sto C I S °
recently achieved superhuman performance in the game of Go, by tabula rasa reinforce-
ment learning from games of self-play. In this paper, we generalise this approach into

a single AlphaZero algorithm that can achieve, tabula rasa, superhuman performance in Game White Black | Win Draw Loss
many challenging domains. Starting from random play, and given no domain knowledge

arXiv:1712.01815v1 [cs.Al]

except the game rules, AlphaZero achieved within 24 hours a superhuman level of play in Afphﬂzt' iy Ay r.r_r.['.kﬁ,l_.'h 25 25 0
the games of chess and shogi (Japanese chess) as well as Go. and convincingly defeated a Chess B
. : Stockfish AlphaZero 3 47 0
world-champion program in each case.
The study of computer chess is as old as computer science itself. Babbage, Turing, Shan- Shogi AlphaZero Elmo 43 2 5
non, and von Neumann devised hardware, algorithms and theory to analyse and play the game Elmo AlphaZero 47 0 3
of chess. Chess subsequently became the grand challenge task for a generation of artificial intel- i
ligence researchers, culminating in high-performance computer chess programs that perform at Go AlphaZero AGO 3-day 3 - 19
superhuman level (9, /3). However, these systems are highly tuned to their domain, and cannot AGO 3 'Efﬂ_t‘ AIpImZem 29 - 21
be generalised to other problems without significant human effort.
;\;0"8'*'{‘3"‘3;"3 a"llbi‘i"f" of artificial i’flel"igfz'l()ce hl‘;s b“-"'; to ;m;‘lc ’P“;g’a;‘s ‘hf‘l‘ can u:"' Table 1: Tournament evaluation of AlphaZero in chess, shogi, and Go, as games won, drawn
sty themselves first ciples . Recently, t 10 Z i , . . .
SSosNicom“fou [iesscumg Sour LIS POROR ERIGE):. ooy (e Su oo car ageal or lost from AlphaZero’s perspective, in 100 game matches against Stockfish, Elmo, and the
achieved superhuman performance in the game of Go. by representing Go knowledge using . ; .. , .
deep convolutional neural networks (22, 28), trained solely by reinforcement learning from previously published AlphaGe Zero after 3 days of training. Each program was given | minute
games of self-play (29). In this paper, we apply a similar but fully generic algorithm, which we of thinking time per move.

1

“Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm”, https://arxiv.org/abs/1712.01815

https://arxiv.org/abs/1712.01815

Final Exam Information

Multiple Choice:

22 total multiple choice questions
* 8 questions on graphs
* 14 questions on pre-graph conten
* No questions specifically about C++, pointers, etc

Programming:
* One “easy” question

* Heaps, hash tables, disjoint sets, tree encoding, etc. are fair
game

* One “hard” question

* Graph algorithm: be able to implement Prim, Kruskal, Dijkstra,
BFS, DFS, etc

* We will likely not tell you which algorithm to use!
* We will post the .h files on Wednesday.

End of Semester Logistics

Regrades on Exams:
* Most of these have been posted.

* Any corrections needed, send Mattox an email,
*not™ Piazza.

Next Semester (and every Spring!)

CS 421: “Programming Languages”
* Learn what goes into a language!

* Be able to write an interpreter for the language of
your choice!

* Learn functional programming in Haskell!

End of Semester Logistics

Regrades on MPs/Labs:
* Regrades are being processed today/tomorrow.

* | will make a Piazza update once grade updates are
complete; will follow-up via Piazza.

http://waf.cs.illinois.edu/discovery/

My Passion: Data Discovery

Diversity at Illinois:

Department of Computer Science

GPAs at lllinois:

MATH 221: Calculus |

sseneces s [NenDege

Instructor Students Secti 2 e 20 e g Ao GPA =
All Se 3009 12 e b 2.72 =
Vaiidashti, J” 458 3 e El 3700 =
Davidson, R. 224 1 D +0.21 295 = =
Anema, J 736 4 o +0.10 283 ; w5 T A md
Guzman, R 774 4 o 003 269
Watls, J 228 1 1 009 263 Legend Stacked ' Grouped @ Percent
Mortensen, K. 212 1 1 -0.11 261 ®White ®Asian American ® Hispanic/Latino ® Black ® Native American © Hawaliar/Pacific Islander ® Multiracial ® International = Unknown
McCarthy, R 198 1 1 0.31 2.39
Gilbert, R 177 1 1 -062 205 College of Engineering in
Sump o 2017 15,2014 5
Legend or cicktap & departmen 1o v
o-o-o-0-0 [==] - o - o - o .
(Highest Avg. Grades) — (Lowest Avg. Grades) Ehé‘ﬂf(ﬂlfe . Zgg;f}tlle . g‘ng;le (';?gyﬁﬁ&) [
) - Agpinen Bosgen Ing
Instructors with average grades significantly lower than the average (=] — (aw) — o — (am] " frrmnd
grade for a course have increasing red hues. The darkest shading shows the median grades in a course, with each ligher —
showing grades further from the median
1005 s w 0% s 0% e o o 10
- 0 . Percentage of 4.0s given (A+/A] e —

"oy 5
o __

V4o epErany

s2 Ray Eloit
- firn
e]
Andeteaed, -..:;m'ﬂ_n“"' i
T

-

o o ag Pete Elliott
. 31344

Jim Valek
832

Bob Blackman
29.36-1

2
. . Gary Mosller
- i 6243
5 % ee
® s
24 = . s
. [T hn Mackovi
. 2 e _ SR
2 % TR frr——r
Sog ever i sty
22 . .
il - of s
- . . S
ot
- L - - & » .
5 LS
20 : Y b .
- - - . . = " o .
. . L
e : 4
/ 5 fe— e
- : . 1 Tim Beckman
i) . - . TS 7
Py - . .) . o cui- 57

Lovie Smith
25

http://waf.cs.illinois.edu/discovery/
http://waf.cs.illinois.edu/discovery/

CS 305: Data Driven Discovery (Fall 2018)

* Non-majors (no CS, no ECE)

(Sorry, not my decision! Department feels data visualization in Python is too
simple for CS credit.)

* Benefit: Everyone is nearly on the same playing field —
passion of data with core programming tools

* Next offering: Fall 2018!

Floyd-Warshall Algorithm

Floyd-Warshall’s Algorithm is an alterative to Dijkstra
in the presence of negative-weight edges (not
negative weight cycles).

FloydWarshall (G) :

6 Let d be a adj. matrix initialized to +inf
7 foreach (Vertex v : G):
8

d[v][v] =0

9 foreach (Edge (u, v) : G):
10 d[u] [v] = cost(u, v)
11
12 foreach (Vertex u : G):
13 foreach (Vertex v : G):
14 foreach (Vertex w : G):
15 if d[u, v] > d[u, w] + d[w, Vv]:

16 d[u, v] = d[u, w] + d[w, V]

Floyd-Warshall Algorithm

FloydWarshall (G) :

6 Let d be a adj. matrix initialized to +inf
7 foreach (Vertex v : G):
8

d[v][v] =0
9 foreach (Edge (u, v) : G):
10 d[u] [v] = cost(u, V)

12 foreach (Vertex u : G):

13 foreach (Vertex v : G):

14 foreach (Vertex w : G):

15 if d[u, v] > d[u, w] + d[w, Vv]:
16 d[u, v] = d[u, w] + d[w, V]

=
=
olal=]=

Floyd-Warshall Algorithm

12 foreach (Vertex u : G):

13 foreach (Vertex v : G):

14 foreach (Vertex w : G):

15 if d[u, v] > d[u, w] + d[w, Vv]:
16 d[u, v] = d[u, w] + d[w, V]

Initially:

Floyd-Warshall Algorithm

12 foreach (Vertex u : G):
13 foreach (Vertex v : G):

14 foreach (Vertex w : G):
15 if d[u, v] > d[u, w] + d[w, Vv]:
16 d[u, v] = d[u, w] + d[w, V]
Initially: Let u = A; v and w explores for better paths:

1
N N W D m

I

(A—8)

Z

Z

(®)
Eﬂﬂﬂﬂ

>)
@ O® 0
@ 00 E®

...explores:

?

...explores:

?

...explores:

it

Floyd-Warshall Algorithm

12 foreach (Vertex u : G):

13 foreach (Vertex v : G):

14 foreach (Vertex w : G):

15 if d[u, v] > d[u, w] + d[w, Vv]:
16 d[u, v] = d[u, w] + d[w, V]

g - o
Initially: Let u = A; v and w explores for better paths:
- @""..explores:

1
»(©) 4

% _i ®....@..explores:
»(A) 2

o0

?

8

+

-1+3= UPDATE!

:

...explores: 14322 UPDATE!

3+(-2)=1 UPDATE!

>)
@ O® 0

?

®)
®)
©
(©) +oo
)
0

?

Floyd-Warshall Algorithm

12 foreach (Vertex u : G):

13 foreach (Vertex v : G):

14 foreach (Vertex w : G):

15 if d[u, v] > d[u, w] + d[w, Vv]:

16 d[u, v] = d[u, w] + d[w, V]

Initially: Let u = A; v and w explores for better paths:

SEELL

u 0 -1 2 1
H 0 4 3
a7 s
ﬂ 2 0

Floyd-Warshall Algorithm

12 foreach (Vertex u : G):

13 foreach (Vertex v : G):

14 foreach (Vertex w : G):

15 if d[u, v] > d[u, w] + d[w, Vv]:
16 d[u, v] = d[u, w] + d[w, V]
Initially:

- @’@ 2 ""@..explores:

ﬂ 5
Let u = B; v and w explores for better paths:

?

....@..explores:

(@)
> O @0
@ ©0 &

...explores:

it

Floyd-Warshall Algorithm ..;,..l--;’

12 foreach (Vertex u : G):
13 foreach (Vertex v : G): ﬂ 5 0 4 2
14 foreach (Vertex w : G):
15 if d[u, v] > d[u, w] + d[w, Vv]: 0 2
16 d[u, v] = d[u, w] + d[w, V]

g - o
Initially: Let u = B; v and w explores for better paths:

8

+

- @’@ 2 ""@..explores:
....@..explores:

i

3+2=5 UPDATE!

5+2=7 >4, noupdate
+

??
@ ©0 &

...explores:

©
C)
A
C)
A

?

5+1=6 >3,noupdate
4+ (-2)=2 UPDATE!

|

©

Shortest Path Algorithms Runtime:

* Dijkstra’s Algorithm: * Floyd-Warshall:
O(m + n Ig(n)) O(n°)

All Pairs Shortest Path:

Dense Graphs:

Sparse Graphs:

Graphs

Graph Implementations:
* Edge List

* Adjacency Matrix

e Adjacency List

Graph Traversals:
* Breadth First
* Depth First

Minimum Spanning Trees:
e Kruskal’s Algorithm
* Prim’s Algorithm

Shortest Path:
* Dijkstra’s Algorithm
* Floyd-Warshall’s Algorithm

CS 225 —Things To Be Doing

Exam 13: Makeup Exam starts today
More Info: https://courses.engr.illinois.edu/cs225/fa2017/exams/

MP7: The final MP!
Due: Monday, Dec. 11 at 11:59pm

Final Exam starts Thursday!
Worth 250 points, the largest assessment all semester!

https://courses.engr.illinois.edu/cs225/fa2017/exams/

