
CS 225 
Data Structures 

Dec. 4 – Prim’s Algorithm 
Wade Fagen-Ulmschneider 



Kruskal’s Algorithm 
Priority 
Queue: 

 
Total Running Time 

Heap 
O(n + m) + O(m lg(n) ) 

Sorted Array 
O(n + m lg(n)) + O(m) 

KruskalMST(G): 

  DisjointSets forest 

  foreach (Vertex v : G): 

    forest.makeSet(v) 

 

  PriorityQueue Q    // min edge weight 

  foreach (Edge e : G): 

    Q.insert(e) 

 

  Graph T = (V, {}) 

   

  while |T.edges()| < n-1: 

    Vertex (u, v) = Q.removeMin() 

    if forest.find(u) != forest.find(v): 

       T.addEdge(u, v) 

       forest.union( forest.find(u), 

                     forest.find(v) ) 

 

  return T 
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Kruskal’s Algorithm 
Which Priority Queue Implementation is better for 
running Kruskal’s Algorithm? 
 
•Heap: 

 
 
• Sorted Array: 



Mattox Monday 
Exam 12 
•Programming Exam 



Mattox Monday 
• Exam 13 

• Second Chance! 
• You may pick one of the previous 12 exams to retake. 

• (Let the exam you choose be denoted as examN) 

• exam13score = max(avg(exam1..exam12), retake) 
• examNscore = max(examN, retake) 

 
 

If you are happy with your exam average, you can stay 
home.  



 



CS Education Week: Hour of Code 
This week is the 111th birthday of Grace Hopper, a pioneer 
of the field of Computer Science. 
 
Tonight, CS@Illinois + Women in Computer Science is 
hosting an Hour of Code 
 
Volunteer: Help others program their first line of code! 
     Tonight, Dec. 4, 6:00pm – 8:00pm 
     Basement of Siebel 

https://en.wikipedia.org/wiki/Grace_Hopper


Partition Property 
Consider an arbitrary partition of the vertices on G 
into two subsets U and V. 
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Partition Property 
Consider an arbitrary partition of the vertices on G 
into two subsets U and V. 
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Let e be an edge of 
minimum weight across 
the partition. 
 
Then e is part of some 
minimum spanning tree. 

e 



Partition Property 

The partition property suggests an algorithm: 
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Prim’s Algorithm 
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PrimMST(G, s): 

  Input: G, Graph; 

         s, vertex in G, starting vertex 

  Output: T, a minimum spanning tree (MST) of G 

 

  foreach (Vertex v : G):   

    d[v] = +inf 

    p[v] = NULL 

  d[s] = 0 

 

  PriorityQueue Q   // min distance, defined by d[v] 

  Q.buildHeap(G.vertices()) 

  Graph T           // "labeled set" 

 

  repeat n times: 

    Vertex m = Q.removeMin() 

    T.add(m) 

    foreach (Vertex v : neighbors of m not in T): 

      if cost(v, m) < d[v]: 

        d[v] = cost(v, m) 

        p[v] = m 

 

  return T 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 



Prim’s Algorithm 
PrimMST(G, s): 

  foreach (Vertex v : G):   

    d[v] = +inf 

    p[v] = NULL 

  d[s] = 0 

 

  PriorityQueue Q // min distance, defined by d[v] 

  Q.buildHeap(G.vertices()) 

  Graph T         // "labeled set" 

 

  repeat n times: 

    Vertex m = Q.removeMin() 

    T.add(m) 

    foreach (Vertex v : neighbors of m not in T): 

      if cost(v, m) < d[v]: 

        d[v] = cost(v, m) 

        p[v] = m 
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Prim’s Algorithm 
PrimMST(G, s): 

  foreach (Vertex v : G):   

    d[v] = +inf 

    p[v] = NULL 

  d[s] = 0 

 

  PriorityQueue Q // min distance, defined by d[v] 

  Q.buildHeap(G.vertices()) 

  Graph T         // "labeled set" 

 

  repeat n times: 

    Vertex m = Q.removeMin() 

    T.add(m) 

    foreach (Vertex v : neighbors of m not in T): 

      if cost(v, m) < d[v]: 

        d[v] = cost(v, m) 

        p[v] = m 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

Adj. Matrix Adj. List 

Heap O(n2 + m lg(n)) O(n lg(n) + m lg(n)) 

Unsorted 
Array O(n2) O(n2) 

Sparse Graph: 
 
 
Dense Graph: 



MST Algorithm Runtime: 
•Kruskal’s Algorithm: 
  O(n + m lg(n)) 
 
•What must be true about the connectivity of a graph 

when running an MST algorithm? 
 
 
• How does n and m relate? 

 

•Prim’s Algorithm: 
  O(n lg(n) + m lg(n)) 

 



MST Algorithm Runtime: 
•Kruskal’s Algorithm: 
  O(n + m lg(n)) 
 

 
•Prim’s Algorithm: 
  O(n lg(n) + m lg(n)) 

 



CS 225 – Things To Be Doing 
Exam 12 (programming) starts Monday, last programming 
exam before the final! 
More Info: https://courses.engr.illinois.edu/cs225/fa2017/exams/ 

 

MP7: The final MP! 
Extra Credit (+14): Monday, Dec. 4 at 11:59pm 
Due: Monday, Dec. 11 at 11:59pm 

 
Lab: lab_graphs due Sunday 
lab_graphs: Due Sunday @ 11:59pm 

 
New POTDs every M/W/F 
Worth +1 Extra Credit /problem (up to +40 total) 

 

https://courses.engr.illinois.edu/cs225/fa2017/exams/

