
CS 225
Data Structures

Dec. 4 – Prim’s Algorithm
Wade Fagen-Ulmschneider

Kruskal’s Algorithm
Priority
Queue:

Total Running Time

Heap
O(n + m) + O(m lg(n))

Sorted Array
O(n + m lg(n)) + O(m)

KruskalMST(G):

 DisjointSets forest

 foreach (Vertex v : G):

 forest.makeSet(v)

 PriorityQueue Q // min edge weight

 foreach (Edge e : G):

 Q.insert(e)

 Graph T = (V, {})

 while |T.edges()| < n-1:

 Vertex (u, v) = Q.removeMin()

 if forest.find(u) != forest.find(v):

 T.addEdge(u, v)

 forest.union(forest.find(u),

 forest.find(v))

 return T

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Kruskal’s Algorithm
Which Priority Queue Implementation is better for
running Kruskal’s Algorithm?

•Heap:

• Sorted Array:

Mattox Monday
Exam 12
•Programming Exam

Mattox Monday
• Exam 13

• Second Chance!
• You may pick one of the previous 12 exams to retake.

• (Let the exam you choose be denoted as examN)

• exam13score = max(avg(exam1..exam12), retake)
• examNscore = max(examN, retake)

If you are happy with your exam average, you can stay
home. 

CS Education Week: Hour of Code
This week is the 111th birthday of Grace Hopper, a pioneer
of the field of Computer Science.

Tonight, CS@Illinois + Women in Computer Science is
hosting an Hour of Code

Volunteer: Help others program their first line of code!
 Tonight, Dec. 4, 6:00pm – 8:00pm
 Basement of Siebel

https://en.wikipedia.org/wiki/Grace_Hopper

Partition Property
Consider an arbitrary partition of the vertices on G
into two subsets U and V.

A

C

D

E

B

F

8 4

2

7 1 2

3 9

5

U V

Partition Property
Consider an arbitrary partition of the vertices on G
into two subsets U and V.

A

C

D

E

B

F

8 4

2

7 1 2

3 9

5

U V

Let e be an edge of
minimum weight across
the partition.

Then e is part of some
minimum spanning tree.

e

Partition Property

The partition property suggests an algorithm:

A

C

D E

B

F G

H 16

5

5

2
15

16

10

11

8

9
12

4

17
13

9

Prim’s Algorithm

A
C

D E

B

F

16

5

2
15

11

8

12

17
13

9

PrimMST(G, s):

 Input: G, Graph;

 s, vertex in G, starting vertex

 Output: T, a minimum spanning tree (MST) of G

 foreach (Vertex v : G):

 d[v] = +inf

 p[v] = NULL

 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]

 Q.buildHeap(G.vertices())

 Graph T // "labeled set"

 repeat n times:

 Vertex m = Q.removeMin()

 T.add(m)

 foreach (Vertex v : neighbors of m not in T):

 if cost(v, m) < d[v]:

 d[v] = cost(v, m)

 p[v] = m

 return T

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Prim’s Algorithm
PrimMST(G, s):

 foreach (Vertex v : G):

 d[v] = +inf

 p[v] = NULL

 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]

 Q.buildHeap(G.vertices())

 Graph T // "labeled set"

 repeat n times:

 Vertex m = Q.removeMin()

 T.add(m)

 foreach (Vertex v : neighbors of m not in T):

 if cost(v, m) < d[v]:

 d[v] = cost(v, m)

 p[v] = m

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Adj. Matrix Adj. List

Heap

Unsorted
Array

Prim’s Algorithm
PrimMST(G, s):

 foreach (Vertex v : G):

 d[v] = +inf

 p[v] = NULL

 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]

 Q.buildHeap(G.vertices())

 Graph T // "labeled set"

 repeat n times:

 Vertex m = Q.removeMin()

 T.add(m)

 foreach (Vertex v : neighbors of m not in T):

 if cost(v, m) < d[v]:

 d[v] = cost(v, m)

 p[v] = m

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Adj. Matrix Adj. List

Heap O(n2 + m lg(n)) O(n lg(n) + m lg(n))

Unsorted
Array O(n2) O(n2)

Sparse Graph:

Dense Graph:

MST Algorithm Runtime:
•Kruskal’s Algorithm:
 O(n + m lg(n))

•What must be true about the connectivity of a graph

when running an MST algorithm?

• How does n and m relate?

•Prim’s Algorithm:
 O(n lg(n) + m lg(n))

MST Algorithm Runtime:
•Kruskal’s Algorithm:
 O(n + m lg(n))

•Prim’s Algorithm:
 O(n lg(n) + m lg(n))

CS 225 – Things To Be Doing
Exam 12 (programming) starts Monday, last programming
exam before the final!
More Info: https://courses.engr.illinois.edu/cs225/fa2017/exams/

MP7: The final MP!
Extra Credit (+14): Monday, Dec. 4 at 11:59pm
Due: Monday, Dec. 11 at 11:59pm

Lab: lab_graphs due Sunday
lab_graphs: Due Sunday @ 11:59pm

New POTDs every M/W/F
Worth +1 Extra Credit /problem (up to +40 total)

https://courses.engr.illinois.edu/cs225/fa2017/exams/

