
CS 225
Data Structures

Nov. 15 – Graph Implementations
Wade Fagen-Ulmschneider

Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms

Graph Vocabulary

G = (V, E)
|V| = n
|E| = m

G1

G2

G3

Incident Edges:
 I(v) = { (x, v) in E }

Degree(v): |I|

Adjacent Vertices:
 A(v) = { x : (x, v) in E }

Path(G2): Sequence of vertices
connected by edges

Cycle(G1): Path with a
common begin and end
vertex.

Simple Graph(G): A graph with
no self loops or multi-edges.

(2, 5)

Graph Vocabulary

G = (V, E)
|V| = n
|E| = m

G1

G2

G3

Subgraph(G):
G’ = (V’, E’):
 V’ ∈ V, E’ ∈ E, and
 (u, v) ∈ E u ∈ V’, v ∈ V’

Complete subgraph(G)
Connected subgraph(G)
Connected component(G)
Acyclic subgraph(G)
Spanning tree(G)

(2, 5)

Running times are often reported by n, the number of
vertices, but often depend on m, the number of edges.

How many edges? Minimum edges:
 Not Connected:

 Connected:

 Maximum edges:
 Simple:

 Not simple:

X U

V

W

Z

Y

a

c

b

e

d

f

g

h

UpTree

Proving the size of a minimally connected graph

Theorem:
Every minimally connected graph G=(V, E) has |V|-1 edges.

Thm: Every minimally connected graph G=(V, E) has |V|-1 edges.

Proof: Consider an arbitrary, minimally connected graph G=(V, E).

Lemma 1: Every connected subgraph of G is minimally connected.
(Easy proof by contradiction left for you.)

Inductive Hypothesis: For any j < |V|, any minimally connected
graph of j vertices has j-1 edges.

Suppose |V| = 1:
Definition: A minimally connected graph of 1 vertex has 0 edges.

Theorem: |V|-1 edges 1-1 = 0.

Suppose |V| > 1:
Choose any vertex u and let d denote the degree of u.

Remove the incident edges of u, partitioning the graph into ___
components: C0 = (V0, E0), …, Cd = (Vd, Ed).

By Lemma 1, every component Ck is a minimally
connected subgraph of G.

By our _______: _________________.

Finally, we count edges:

X U

V

W

Z

Y

a

c e

f

h

Graph ADT Functions:
- insertVertex(K key);
- insertEdge(Vertex v1, Vertex v2, K key);

- removeVertex(Vertex v);
- removeEdge(Vertex v1, Vertex v2);

- incidentEdges(Vertex v);
- areAdjacent(Vertex v1, Vertex v2);

- origin(Edge e);
- destination(Edge e);

Data:
- Vertices
- Edges
- Some data structure

maintaining the
structure between
vertices and edges.

X

V

W

Z

Y

b

e

d

f

g

h

Graph Implementation: Edge List

v

u

w

a c

b
z

d

insertVertex(K key);

removeVertex(Vertex v);

areAdjacent(Vertex v1, Vertex v2);

incidentEdges(Vertex v);

u

v

w

z

a

b

c

d

Graph Implementation: Adjacency Matrix

v

u

w

a c

b
z

d

insertVertex(K key);
removeVertex(Vertex v);
areAdjacent(Vertex v1, Vertex v2);
incidentEdges(Vertex v);

u

v

w

z

a

b

c

d

u v w z

u

v

w

z

CS 225 – Things To Be Doing
Exam 10 (programming) is ongoing!
More Info: https://courses.engr.illinois.edu/cs225/fa2017/exams/

MP6: A one week reflection MP!
Due: Friday, Nov. 17 at 11:59pm

Lab: lab_dict released on Wednesday
Due: Wednesday, Nov. 29 @ 7pm (Before the first lab after break!)

POTDs
Worth +1 Extra Credit /problem (up to +40 total)

https://courses.engr.illinois.edu/cs225/fa2017/exams/

