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Graphs 

To study all of these structures: 
1. A common vocabulary 
2. Graph implementations 
3. Graph traversals 
4. Graph algorithms 

 



Graph Vocabulary 

G = (V, E) 
|V| = n 
|E| = m 

G1 

G2 

G3 

Incident Edges: 
    I(v) = { (x, v) in E } 
 
Degree(v): |I| 
 
Adjacent Vertices: 
    A(v) = { x : (x, v) in E } 
 
Path(G2): Sequence of vertices 
connected by edges 
 
Cycle(G1): Path with a 
common begin and end 
vertex. 
 
Simple Graph(G): A graph with 
no self loops or multi-edges. 
 

(2, 5) 



Graph Vocabulary 

G = (V, E) 
|V| = n 
|E| = m 

G1 

G2 

G3 

Subgraph(G): 
G’ = (V’, E’): 
    V’ ∈ V, E’ ∈ E, and 
    (u, v) ∈ E  u ∈ V’, v ∈ V’ 
 
Complete subgraph(G) 
Connected subgraph(G) 
Connected component(G) 
Acyclic subgraph(G) 
Spanning tree(G) 
 

(2, 5) 



Running times are often reported by n, the number of 
vertices, but often depend on m, the number of edges. 
 
How many edges?   Minimum edges: 
                                           Not Connected: 
 
                                           Connected: 
 
                                   Maximum edges: 
                                           Simple: 
 
                                           Not simple: 
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Proving the size of a minimally connected graph  

Theorem: 
Every minimally connected graph G=(V, E) has |V|-1 edges. 
 
 



Thm: Every minimally connected graph G=(V, E) has |V|-1 edges. 
 
Proof: Consider an arbitrary, minimally connected graph G=(V, E). 
 
Lemma 1: Every connected subgraph of G is minimally connected. 
(Easy proof by contradiction left for you.) 
 
Inductive Hypothesis: For any j < |V|, any minimally connected 
graph of j vertices has j-1 edges. 
 



Suppose |V| = 1: 
Definition: A minimally connected graph of 1 vertex has 0 edges. 
 
Theorem: |V|-1 edges  1-1 = 0. 
 



Suppose |V| > 1: 
Choose any vertex u and let d denote the degree of u. 
 
Remove the incident edges of u, partitioning the graph into ___ 
components: C0 = (V0, E0), …, Cd = (Vd, Ed). 
 
By Lemma 1, every component Ck is a minimally 
connected subgraph of G. 
 
By our _______: _________________. 
 
Finally, we count edges: 
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Graph ADT Functions: 
- insertVertex(K key); 
- insertEdge(Vertex v1, Vertex v2, K key); 

 
- removeVertex(Vertex v); 
- removeEdge(Vertex v1, Vertex v2); 

 
- incidentEdges(Vertex v); 
- areAdjacent(Vertex v1, Vertex v2); 

 
- origin(Edge e); 
- destination(Edge e); 

Data: 
- Vertices 
- Edges 
- Some data structure 

maintaining the 
structure between 
vertices and edges. 
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Graph Implementation: Edge List 
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insertVertex(K key); 
 
removeVertex(Vertex v); 
 
areAdjacent(Vertex v1, Vertex v2); 
 
incidentEdges(Vertex v); 
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Graph Implementation: Adjacency Matrix 
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insertVertex(K key); 
removeVertex(Vertex v); 
areAdjacent(Vertex v1, Vertex v2); 
incidentEdges(Vertex v); 
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CS 225 – Things To Be Doing 
Exam 10 (programming) is ongoing! 
More Info: https://courses.engr.illinois.edu/cs225/fa2017/exams/ 

 

MP6: A one week reflection MP! 
Due: Friday, Nov. 17 at 11:59pm 
 

Lab: lab_dict released on Wednesday 
Due: Wednesday, Nov. 29 @ 7pm   (Before the first lab after break!) 

 
POTDs 
Worth +1 Extra Credit /problem (up to +40 total) 

 

https://courses.engr.illinois.edu/cs225/fa2017/exams/

