
CS 225
Data Structures

Nov. 13 – Introduction to Graphs
Wade Fagen-Ulmschneider

UpTree

1

2

3

6

7

8

9

4

5

10

11

Disjoint Sets Find
int DisjointSets::find(int i) {

 if (arr_[i] < 0) { return i; }

 else { return find(arr_[i]); }

}

1
2

3

4

void DisjointSets::unionBySize(int root1, int root2) {

 int newSize = arr_[root1] + arr_[root2];

 // If arr_[root1] is less than (more negative), it is the larger set;

 // we union the smaller set, root2, with root1.

 if (arr_[root1] < arr_[root2]) {

 arr_[root2] = root1;

 arr_[root1] = newSize;

 }

 // Otherwise, do the opposite:

 else {

 arr_[root1] = root2;

 arr_[root2] = newSize;

 }

}

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Exam Information w/ Mattox

Now: Exam 10 – Programming Exam
You should have seen the .h files on Piazza.

Next Week: Exam 11 – Theory Exam
Hash Tables
Heaps
Disjoint Sets
Hash Functions (SUHA)

POTDs

POTDs
We have exhausted the initial set. We'll be making more, but we
may have some "gap days". The POTDs will be more puzzle-like in
nature (you won't be told what data structure or algorithm you
need to solve it).

No POTDs over Fall Break.

In Review: Data Structures

Array
- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
 - Hashing
 - Heaps
 - Priority Queues
 - UpTrees
 - Disjoint Sets

List
- Doubly Linked List
- Skip List
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

• Constant time access to any element, given an index
a[k] is accessed in O(1) time, no matter how large the array grows

• Cache-optimized

Many modern systems cache or pre-fetch nearby memory values
due the “Principle of Locality”. Therefore, arrays often perform
faster than lists in identical operations.

[1] [2] [3] [4] [5] [6] [7] [0]

Array

• Efficient general search structure
Searches on the sort property run in O(lg(n)) with Binary Search

• Inefficient insert/remove

Elements must be inserted and removed at the location dictated by the
sort property, resulting shifting the array in memory – an O(n)
operation

[1] [2] [3] [4] [5] [6] [7] [0]

Array

[1] [2] [3] [4] [5] [6] [7] [0]

Sorted Array

• Constant time add/remove at the beginning/end
Amortized O(1) insert and remove from the front and of the array
Idea: Double on resize

• Inefficient search structure

With no sort property, all searches must iterate the entire array; O(1)
time

[1] [2] [3] [4] [5] [6] [7] [0]

Array

[1] [2] [3] [4] [5] [6] [7] [0]

Unsorted Array

• First In First Out (FIFO) ordering of data
Maintains an arrival ordering of tasks, jobs, or data

• All ADT operations are constant time operations

enqueue() and dequeue() both run in O(1) time

[1] [2] [3] [4] [5] [6] [7] [0]
Array

[1] [2] [3] [4] [5] [6] [7] [0]
Unsorted Array

[1] [2] [3] [4] [5] [6] [7] [0]
Queue (FIFO)

• Last In First Out (LIFO) ordering of data
Maintains a “most recently added” list of data

• All ADT operations are constant time operations

push() and pop() both run in O(1) time

[1] [2] [3] [4] [5] [6] [7] [0]
Array

[1] [2] [3] [4] [5] [6] [7] [0]
Unsorted Array

[1] [2] [3] [4] [5] [6] [7] [0]
Stack (LIFO)

In Review: Data Structures

Array
- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
 - Hashing
 - Heaps
 - Priority Queues
 - UpTrees
 - Disjoint Sets

List
- Doubly Linked List
- Skip List
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

In Review: Data Structures

Array
- Sorted Array
- Unsorted Array
 - Stacks
 - Queues
 - Hashing
 - Heaps
 - Priority Queues
 - UpTrees
 - Disjoint Sets

List
- Doubly Linked List
- Skip List
- Trees
 - BTree
 - Binary Tree
 - Huffman Encoding
 - kd-Tree
 - AVL Tree

Graphs

The Internet 2003
The OPTE Project (2003)
Map of the entire internet; nodes
are routers; edges are connections.

Who’s the real main character in Shakespearean tragedies?
Martin Grandjean (2016)
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-
shakespearen-tragedies-heres-what-the-data-say

https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say
https://www.pbs.org/newshour/arts/whos-the-real-main-character-in-shakespearen-tragedies-heres-what-the-data-say

Wolfram|Alpha's "Personal Analytics“ for Facebook
Generated: April 2013 using Wade Fagen-Ulmschneider’s Profile Data

“Rush Hour” Solution
Unknown Source
Presented by Cinda Heeren, 2016

“Rule of 7”
Unknown Source
Presented by Cinda Heeren, 2016

This graph can be used to quickly calculate
whether a given number is divisible by 7.

1. Start at the circle node at the top.

2. For each digit d in the given number, follow
d blue (solid) edges in succession. As you
move from one digit to the next, follow 1 red
(dashed) edge.

3. If you end up back at the circle node, your
number is divisible by 7.

3703

Conflict-Free Final Exam Scheduling Graph
Unknown Source
Presented by Cinda Heeren, 2016

Class Hierarchy At University of
Illinois Urbana-Champaign
A. Mori, W. Fagen-Ulmschneider, C. Heeren

Graph of every course at UIUC; nodes are
courses, edges are prerequisites

http://waf.cs.illinois.edu/discovery/class_hi
erarchy_at_illinois/

http://waf.cs.illinois.edu/discovery/class_hierarchy_at_illinois/
http://waf.cs.illinois.edu/discovery/class_hierarchy_at_illinois/

MP Collaborations in CS 225
Unknown Source
Presented by Cinda Heeren, 2016

“Stanford Bunny”
Greg Turk and Mark Levoy (1994)

Graphs

To study all of these structures:
1. A common vocabulary
2. Graph implementations
3. Graph traversals
4. Graph algorithms

CS 225 – Things To Be Doing
Exam 10 (programming) is ongoing!
More Info: https://courses.engr.illinois.edu/cs225/fa2017/exams/

MP6: A one week reflection MP!
Due: Friday, Nov. 17 at 11:59pm

Lab: lab_dict released on Wednesday
Due: Wednesday, Nov. 29 @ 7pm (Before the first lab after break!)

POTD
Worth +1 Extra Credit /problem (up to +40 total)

https://courses.engr.illinois.edu/cs225/fa2017/exams/

