
CS 225
Data Structures

Nov. 8 – Disjoint Sets
Wade Fagen-Ulmschneider

buildHeap
U

L D

P

B

I

H E

W A O N

B U I L D H E A P N O W

1. Sort the array:

2.

3.

template <class T>

void Heap<T>::buildHeap() {

 for (unsigned i = 0; i <= size_; i++) {

 heapifyUp(i);

 }

}

1
2

3

4

5

6

template <class T>

void Heap<T>::buildHeap() {

 for (unsigned i = parent(size); i > 0; i--) {

 heapifyDown(i);

 }

}

1
2

3

4

5

6

Proving buildHeap Running Time

Theorem: The running time of buildHeap on array of size n
is: _O(n)__.

Strategy:
- We know that constant work is done based on the

distance a node is away from the root (eg: it’s height).

- Therefore, the running time is proportional to the sum of
the heights of the heights of all the nodes.

- We will work towards creating a proof around the sum of
the heights of all the nodes.

Proving buildHeap Running Time

S(h): Sum of the heights of all nodes in a complete tree of
 height h.

S(0) = 0

S(1) = 1

S(2) = 4

S(h) = 2S(h-1) + h
 = 2(h+1) – 2 – h

U

L D

P

B

I

H E

W A O N

perfect

Proving buildHeap Running Time

We proved the recurrence:
 S(h) = 2S(h-1) + h = 2(h+1) – 2 – h

Proving buildHeap Running Time

No one cares about things in terms of height:
 S(h) = 2(h+1) – 2 – h

We know that the nodes in a perfect tree of height h is:
 n =

Heap Sort

Running Time?

Why do we care about another sort?

5

15 9

25

4

6

7 20

11 16 12 14

4 5 6 15 9 7 20 16 25 14 12 11

1.

2.

3.

Priority Queue Implementation
insert removeMin buildHeap

O(1)A O(n)

O(1) O(n)

O(n) O(1)

O(n) O(1)

AVL Tree

unsorted

sorted

Heap

MPs to finish the semester

Fall break is almost here – 1.5 more weeks!

MP6: A quick case study on MP5.
• Released today around 4:00pm
• Due next Friday (the Friday before break), no EC deadline

MP7: The big finale for CS 225!
• Released next Tuesday
• Due Dec. 11 (4 weeks), has 3 parts, +14 points of EC!

Array Abstractions

A(nother) throwback to CS 173…

Let R be an equivalence relation on us where (s, t) ∈ R if s
and t have the same favorite among:
 { ___, ___, ____, ___, ____, ___ }

Disjoint Sets

2 5 9 7

0 1 4 8 3 6

Disjoint Sets

2 5 9 7

0 1 4 8 3 6

Operation: find(4)

Disjoint Sets

2 5 9 7

0 1 4 8 3 6

Operation: find(4) == find(8)

Disjoint Sets

2 5 9 7

0 1 4 8 3 6

Operation:
 if (find(2) != find(7)) {
 union(find(2), find(7));
 }

Disjoint Sets ADT

• Maintain a collection S = {s0, s1, … sk}

• Each set has a representative member.

• API: void makeSet(const T & t);
 void union(const T & k1, const T & k2);

 T & find(const T & k);

Implementation #1

0 1 4 2 7 3 5 6

1 2 3 4 5 6 7 0

0 2 3 0 3 3 2 0

Find(k):

Union(k1, k2):

Implementation #2

• We will continue to use an array where the index is the
key

• The value of the array is:
• -1, if we have found the representative element

• The index of the parent, if we haven’t found the rep. element

• We will call theses UpTrees:

1 2 3 0

-1 -1 -1 -1

0 1 2 3

UpTrees

1 2 3 0

-1 -1 -1 -1

0 1 2 3

1 2 3 0

1 2 3 0 1 2 3 0

Disjoint Sets

2 5 9 7 0 1 4 8 3 6

1 2 3 4 5 6 7 0

8 5 6 -1 -1 -1 -1 4

8 9

4 5

0

1

2

3 4 5

6

7

8
9

Disjoint Sets Find

Running time?

int DisjointSets::find() {

 if (s[i] < 0) { return i; }

 else { return _find(s[i]); }

}

1
2

3

4

void DisjointSets::union(int r1, int r2) {

}

1
2

3

4 1

4

8

0

CS 225 – Things To Be Doing
Exam 9 (theory, trees) is ongoing!
More Info: https://courses.engr.illinois.edu/cs225/fa2017/exams/

MP6: One week MP*
Due Monday, Nov. 17 at 11:59pm

Lab: lab released today
Due Sunday, Nov. 12 at 11:59pm

POTD
Every Monday-Friday – Worth +1 Extra Credit /problem (up to +40 total)

https://courses.engr.illinois.edu/cs225/fa2017/exams/

