CS 225

Data Structures

Oct. 23 – BTree

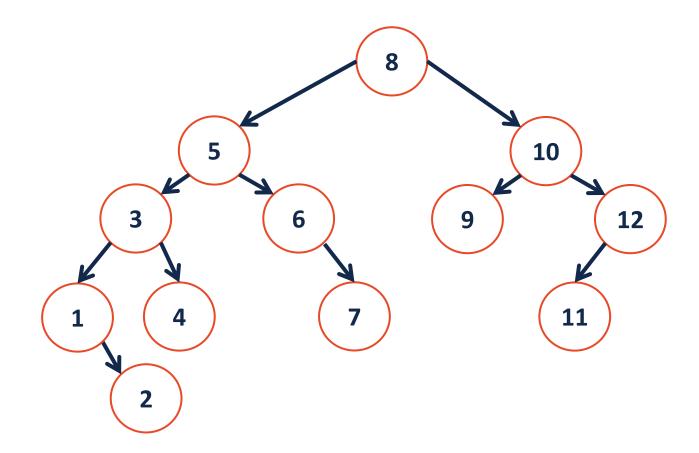
Q: Can we always fit our data in main memory?

Q: Where else can we keep our data?

However, big-O assumes uniform time for all operations.

Vast Differences in Time

A 3GHz CPU performs 3m operations in


Old Argument: "Disk Storage is Slow"

- Bleeding-edge storage is pretty fast: NVMe (M.2, PCIe 3.0 x4):

- Large Disks (10 TB+) still have slow throughout:

<u>New Argument:</u> "The Cloud is Slow!"

AVLs on Disk

Real Application

Imagine storing driving records for everyone in the US:

How many records?

How much data in total?

How deep is the AVL tree?

Exams

Exam 7 (Theory Exam)

- Live right now!

Exam 8 (Programming Exam)

- Review Assignments: MP4, lab_avl
- Topics: AVL trees, iterators

Share Your #cs225animation

On Facebook/Twitter/Instagram:

#cs225animation

...I'll search this tag every few days and like/heart your work!

On Piazza:

See pinned post: "MP4: Animation Sharing"

BTree Motivations

Knowing that we have large seek times for data, we want to:

BTree (of order m)

	-3 8 23 25 31 42 43 55
--	------------------------

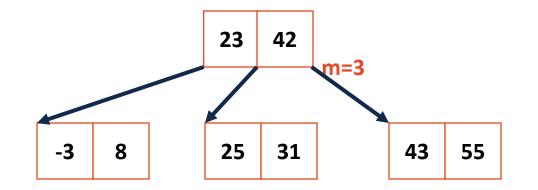
Goal: Minimize the number of reads!

Build a tree that uses _____ / node [1 network packet] [1 disk block]

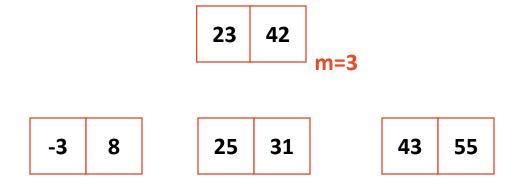
BTree Insertion

A **BTrees** of order **m** is an m-way tree:

- All keys within a node are ordered
- All leaves contain hold no more than **m-1** nodes.



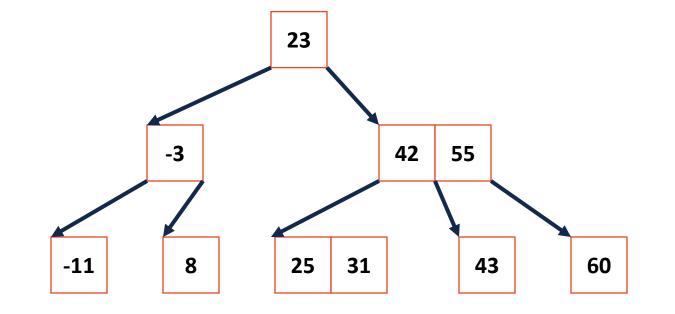
BTree Insertion


When a BTree node reaches **m** keys:

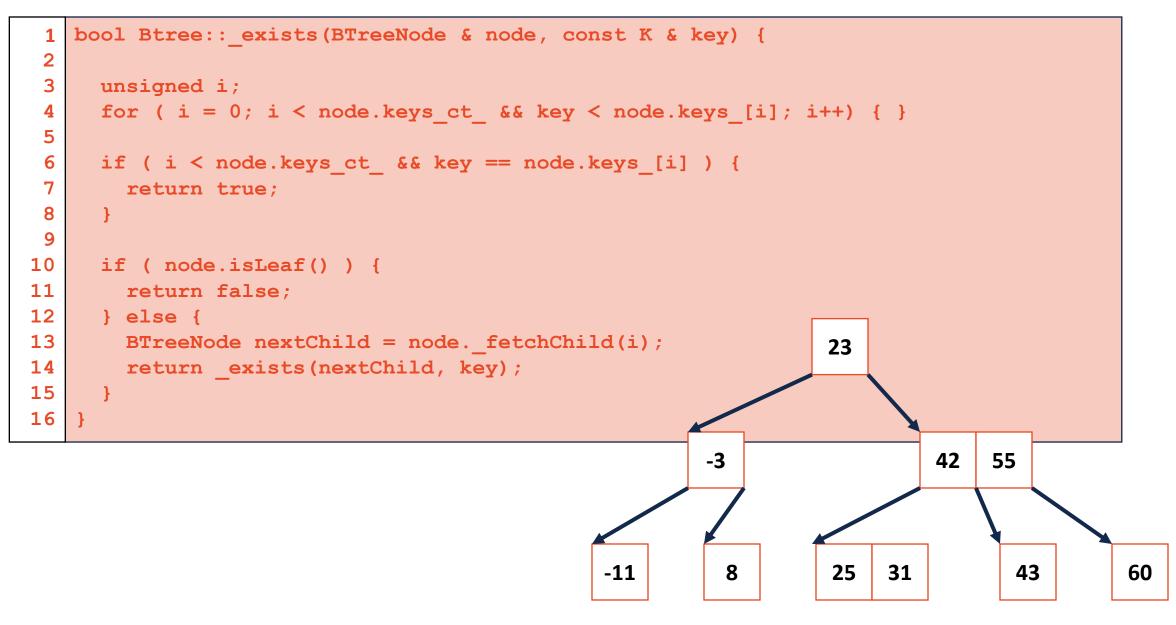
BTree Recursive Insert

BTree Recursive Insert

BTree Visualization/Tool


https://www.cs.usfca.edu/~galles/visualization/BTree.html

Btree Properties


A **BTrees** of order **m** is an m-way tree:

- All keys within a node are ordered
- All leaves contain hold no more than **m-1** nodes.
- All internal nodes have exactly one more key than children
- Root nodes can be a leaf or have **[2, m]** children.
- All non-root, internal nodes have [ceil(m/2), m] children.
- All leaves are on the same level

BTree Search

BTree Search

BTree Analysis

The height of the BTree determines maximum number of _____ possible in search data.

...and the height of the structure is: _____

Therefore: The number of seeks is no more than

...suppose we want to prove this!

BTree Analysis

In our AVL Analysis, we saw finding an upper bound on the height (given **n**) is the same as finding a lower bound on the nodes (given **h**).

We want to find a relationship for BTrees between the number of keys (**n**) and the height (**h**).

CS 225 – Things To Be Doing

Exam 7 (theory) starts Monday!

Review Document: On Piazza Review Session: 7pm, 1404 SC More Info: <u>https://courses.engr.illinois.edu/cs225/fa2017/exams/</u>

MP4: Due Monday

Due: Monday, Oct. 23 at 11:59pm

Lab: lab_avl Due Sunday, Oct. 22 at 11:59pm

POTD

Every Monday-Friday – Worth +1 Extra Credit /problem (up to +40 total)