CS 225

Data Structures

Oct. 13 – AVL Rotations

BST Reflection

We know the **height** of a tree.

We know if a tree is **full**, **complete**, and/or **perfect**.

- We know that every binary tree has ______ NULL pointers. We know many **traversals** of trees.
- We know that a **BST's height is bound by n** such that: $\leq h \leq$

We know all key **BST operations run in O(h)** time. We know a BST can be used to **implement a Dictionary**. We know that a **random BST has an average height** of _____ We know that **an inorder traversal** of a BST is a _____ We know **how to implement a BST** in C++.

Height-Balanced Tree

What tree makes you happier?

A tree is height balanced if:

BST Rotation

We will perform a rotation that maintains two properties: **1.**

2.

BST Rotation Summary

- Four kinds of rotations (L, R, LR, RL)
- All rotations are local (subtrees are not impacted)
- All rotations are constant time: O(1)
- BST property maintained

GOAL:

We call these trees:

AVL Trees

Three issues for consideration:

- Rotations
- Maintaining Height
- Detecting Imbalance

Theorem:

If an insertion occurred in subtrees t_3 or t_4 and a subtree imbalance was detected at t, then a ______ rotation about t restores the balance of the tree.

We gauge this by noting the balance factors:

```
t: b=____
```

t->right: b=____

CS 225 – Things To Be Doing

Exam 5 (Theory) is ongoing!

More Info: https://courses.engr.illinois.edu/cs225/fa2017/exams/

MP4: Available later today!

Due: Monday, Oct. 23 at 11:59pm

Lab!

Due: Sunday, Oct. 15 at 11:59pm

POTD

Every Monday-Friday – *Worth +1 Extra Credit /problem (up to +40 total)*