
CS 225 
Data Structures 

Sept. 15 - Templates 



Sphere obj; RedBall obj; 

RedBall r; 

Sphere &obj = r; 

obj.print_1(); 

 

“Sphere” 
 

No print_1() is defined in RedBall, 
so we use the base class (Sphere)’s 
print_1():  “Sphere” 

“Sphere” 

obj.print_2(); 

 

“Sphere” 
 

The type of obj is RedBall, so we’ll 
use RedBall’s implementation:  
“Ball” 

The type of obj is Sphere, so 
we’ll use Sphere’s impl since 
Sphere::print_2() is not virtual:  
“Sphere” 

obj.print_3(); 

 

“Sphere” 
 

No print_3() is defined in RedBall, 
so we use the base class (Sphere)’s 
print_3():  “Sphere” 

“Sphere” 
 

obj.print_4(); 

 

“Sphere” 
 

The type of obj is RedBall, so we’ll 
use RedBall’s implementation:  
“Ball” 
 

The type of obj is Sphere, but 
Sphere::print_4() is virtual.  
Therefore, we will used the 
derived class’ impl: “Ball” 

obj.print_5(); 

 

 

Will not compile since 
Sphere is an abstract 
class when print_5() is 
defined as a pure 
virtual function. 

The type of obj is RedBall, so we’ll 
use RedBall’s implementation:  
“Ball” 
 

The type of obj is Sphere, but 
Sphere::print_4() is virtual.  
Therefore, we will used the 
derived class’ impl: “Ball” 
 



class Sphere { 

  public: 

    Sphere(double d) {  /* ... */  } 

} 

 

class Ball : public Sphere { 

 

 

} 

 

int main() { 

  Ball b; 

  return 0;  

} 
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Abstract Class: 
[Requirement]: 
 
 
 
[Syntax]: 
 
 
 
[As a result]: 
 
 
 
 



class Sphere { 

  public: 

    virtual Sphere(); 

} 

 

class Ball : public Sphere { 

  public: 

    __________________________________; 

} 

 

 

virtual-ctor.cpp 
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class Sphere { 

  public: 

    virtual ~Sphere(); 

} 

 

class Ball : public Sphere { 

  public: 

    __________________________________; 

} 

 

 

virtual-dtor.cpp 
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Call Order – How are derived classes created? 



Call Order – How are derived classes destroyed? 



MP: Extra Credit 
The most successful MP is an MP done early! 
Unless otherwise specified in the MP, we will award +1 
extra credit point per day for completing Part 1 before the 
due date (up to +7 points):            Example for MP2: 
     +7 points: Complete by Monday, Sept. 18 (11:59pm) 
     +6 points: Complete by Tuesday, Sept. 19 (11:59pm) 
     +5 points: Complete by Wednesday, Sept. 20 (11:59pm) 
     +4 points: Complete by Thursday, Sept. 21 (11:59pm) 
     +3 points: Complete by Friday, Sept. 22 (11:59pm) 
     +2 points: Complete by Saturday, Sept. 23 (11:59pm) 
     +1 points: Complete by Sunday, Sept. 24 (11:59pm) 
     MP2 Due Date: Monday, Sept 25 



MP: Extra Credit 
The most successful MP is an MP done early! 
We will give partial credit and maximize the value of your extra 
credit: 
  
You made a submission and missed a few edge cases in Part 1: 
     Monday:  +7 * 80% = +5.6 earned 
 
You fixed your code and got a perfect score on Part 1: 
     Tuesday: +6 * 100% = +6 earned  (maximum benefit) 
 
You began working on Part 2, but added a seg fault to Part 1: 
     Wednesday:  +5 * 0% = +0 earned 
 
… 
 
 



Overloaded Operator LHS/RHS 
 
bool Sphere::operator<( ________________ ) { 

   // ... 

 

} 

 

 

Sphere& Sphere::operator=( _____________ ) { 

   // ... 

 

} 



void Sphere::_destroy() {  delete[] props_;  } 

 

void Sphere::_copy(const Sphere &other) { 

  r_ = other.r; 

  props_max_ = other.props_max_; 

  props_ct_ = other.props_ct_; 

  props_ = new std::string[10]; 

  for (unsigned i = 0; i < props_ct_; i++) { 

    props_[i] = other.props_[i]; 

  } 

} 

 

Sphere& Sphere::operator=(const Sphere &other) { 

 

 

 

  _destroy(); 

  _copy(other); 

  return *this; 

} 

#include "Sphere.h" 

 

int main() { 

  cs225::Sphere s(10); 

  s = s; 

  return 0; 

} 
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Abstract Data Type 



List ADT 



What types of “stuff” do we want in our list? 



Templates 



 

 

T maximum(T a, T b) { 

  T result; 

  result = (a > b) ? a : b; 

  return result; 

} 

template1.cpp 
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T maximum(T a, U b) { 

  T result; 

  result = (a > b) ? a : b; 

  return result; 

} 

template2.cpp 
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#ifndef LIST_H 

#define LIST_H 

 

 

 

class List { 

  public: 

 

 

 

 

 

 

 

 

  private: 

 

 

 

}; 

 

#endif 

List.h 
1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

 

List.cpp 
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CS 225 – Things To Be Doing 
Exam 2 starts on Monday! 
More Info: https://courses.engr.illinois.edu/cs225/fa2017/exams/ 

 

lab_inheritance 
Due: Sunday, Sept. 17 (11:59pm) 

 

MP2 is out – Early Deadline Monday, Sept. 18 
Up to +7 Extra Credit for Early Submission 

 

POTD 
Every Monday-Friday – Worth +1 Extra Credit /problem (up to +40 total) 

 

https://courses.engr.illinois.edu/cs225/fa2017/exams/

