
CS 225
Data Structures

Sept. 15 - Templates

Sphere obj; RedBall obj;

RedBall r;

Sphere &obj = r;

obj.print_1();

“Sphere”

No print_1() is defined in RedBall,
so we use the base class (Sphere)’s
print_1(): “Sphere”

“Sphere”

obj.print_2();

“Sphere”

The type of obj is RedBall, so we’ll
use RedBall’s implementation:
“Ball”

The type of obj is Sphere, so
we’ll use Sphere’s impl since
Sphere::print_2() is not virtual:
“Sphere”

obj.print_3();

“Sphere”

No print_3() is defined in RedBall,
so we use the base class (Sphere)’s
print_3(): “Sphere”

“Sphere”

obj.print_4();

“Sphere”

The type of obj is RedBall, so we’ll
use RedBall’s implementation:
“Ball”

The type of obj is Sphere, but
Sphere::print_4() is virtual.
Therefore, we will used the
derived class’ impl: “Ball”

obj.print_5();

Will not compile since
Sphere is an abstract
class when print_5() is
defined as a pure
virtual function.

The type of obj is RedBall, so we’ll
use RedBall’s implementation:
“Ball”

The type of obj is Sphere, but
Sphere::print_4() is virtual.
Therefore, we will used the
derived class’ impl: “Ball”

class Sphere {

 public:

 Sphere(double d) { /* ... */ }

}

class Ball : public Sphere {

}

int main() {

 Ball b;

 return 0;

}

derived-defaultCtor.cpp
1

2

3

4

5

6

7

8

9

10

11

12

13

14

Abstract Class:
[Requirement]:

[Syntax]:

[As a result]:

class Sphere {

 public:

 virtual Sphere();

}

class Ball : public Sphere {

 public:

 __________________________________;

}

virtual-ctor.cpp
15

16

17

18

19

20

21

22

23

24

class Sphere {

 public:

 virtual ~Sphere();

}

class Ball : public Sphere {

 public:

 __________________________________;

}

virtual-dtor.cpp
15

16

17

18

19

20

21

22

23

24

Call Order – How are derived classes created?

Call Order – How are derived classes destroyed?

MP: Extra Credit
The most successful MP is an MP done early!
Unless otherwise specified in the MP, we will award +1
extra credit point per day for completing Part 1 before the
due date (up to +7 points): Example for MP2:
 +7 points: Complete by Monday, Sept. 18 (11:59pm)
 +6 points: Complete by Tuesday, Sept. 19 (11:59pm)
 +5 points: Complete by Wednesday, Sept. 20 (11:59pm)
 +4 points: Complete by Thursday, Sept. 21 (11:59pm)
 +3 points: Complete by Friday, Sept. 22 (11:59pm)
 +2 points: Complete by Saturday, Sept. 23 (11:59pm)
 +1 points: Complete by Sunday, Sept. 24 (11:59pm)
 MP2 Due Date: Monday, Sept 25

MP: Extra Credit
The most successful MP is an MP done early!
We will give partial credit and maximize the value of your extra
credit:

You made a submission and missed a few edge cases in Part 1:
 Monday: +7 * 80% = +5.6 earned

You fixed your code and got a perfect score on Part 1:
 Tuesday: +6 * 100% = +6 earned (maximum benefit)

You began working on Part 2, but added a seg fault to Part 1:
 Wednesday: +5 * 0% = +0 earned

…

Overloaded Operator LHS/RHS

bool Sphere::operator<(________________) {

 // ...

}

Sphere& Sphere::operator=(_____________) {

 // ...

}

void Sphere::_destroy() { delete[] props_; }

void Sphere::_copy(const Sphere &other) {

 r_ = other.r;

 props_max_ = other.props_max_;

 props_ct_ = other.props_ct_;

 props_ = new std::string[10];

 for (unsigned i = 0; i < props_ct_; i++) {

 props_[i] = other.props_[i];

 }

}

Sphere& Sphere::operator=(const Sphere &other) {

 _destroy();

 _copy(other);

 return *this;

}

#include "Sphere.h"

int main() {

 cs225::Sphere s(10);

 s = s;

 return 0;

}

assignmentOpSelf.cpp
1

2

3

4

5

6

7

sphere.cpp
10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Abstract Data Type

List ADT

What types of “stuff” do we want in our list?

Templates

T maximum(T a, T b) {

 T result;

 result = (a > b) ? a : b;

 return result;

}

template1.cpp
1

2

3

4

5

6

7

T maximum(T a, U b) {

 T result;

 result = (a > b) ? a : b;

 return result;

}

template2.cpp
1

2

3

4

5

6

7

#ifndef LIST_H

#define LIST_H

class List {

 public:

 private:

};

#endif

List.h
1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

List.cpp
1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

CS 225 – Things To Be Doing
Exam 2 starts on Monday!
More Info: https://courses.engr.illinois.edu/cs225/fa2017/exams/

lab_inheritance
Due: Sunday, Sept. 17 (11:59pm)

MP2 is out – Early Deadline Monday, Sept. 18
Up to +7 Extra Credit for Early Submission

POTD
Every Monday-Friday – Worth +1 Extra Credit /problem (up to +40 total)

https://courses.engr.illinois.edu/cs225/fa2017/exams/

