

#42: Floyd-Warshall's Algorithm

2 5 December 11, 2017 · *Wade Fagen-Ulmschneider*

lab_ml and Reinforcement Learning

Available Tokens	Learned Move
10	Take 1 token \rightarrow 9
9	Take 2 tokens \rightarrow 7
8	Take 2 tokens \rightarrow 6
7	Take 1 token \rightarrow 6
6	Take 1 token \rightarrow 5
5	Take 2 tokens \rightarrow 3
4	Take 1 token \rightarrow 3
3	Take 1 token → 2
2	Take 2 tokens \rightarrow 0 (win)
1	Take 1 token → 0 (win)

Final Exam Details with Mattox

Floyd-Warshall Algorithm

Floyd-Warshall's Algorithm is an alternative to Dijkstra in the presence of negative-weight edges (but <u>not</u> negative weight cycles).

Pseudocode for Floyd-Warshall's Algorithm 1 FloydWarshall(G): 2 Input: G, Graph; 3 Output: d, an adjacency matrix of distances between all 4 vertex pairs 5 6 Let d be a adj. matrix initialized to +inf foreach (Vertex v : G): 7 8 d[v][v] = 09 foreach (Edge (u, v) : G): 10 d[u][v] = cost(u, v)11 12 foreach (Vertex u : G): 13 foreach (Vertex v : G): 14 foreach (Vertex w : G): 15 if d[u, v] > d[u, w] + d[w, v]: 16 d[u, v] = d[u, w] + d[w, v]17 18 return d

Running Floyd-Warshall:

	Α	B	С	D
Α				
B				
С				
D				

Comparison of Graph Algorithms:

Implementations

- Edge List
- Adjacency Matrix
- Adjacency List

Traversals

- Breadth First
- Depth First

Minimum Spanning Tree

- Kruskal's Algorithm
- Prim's Algorithm

Shortest Path

- Dijkstra's Algorithm
- Floyd-Warshall's Algorithm

CS 225 – Things To Be Doing:

- 1. Exam #13 (makeup exam) starts today
- MP7 due Monday, Dec. 11 at 11:59pm
 Final exam starts Thursday

Good luck on all your finals! :)