

#41: Dijkstra's + Shortest Path

December 8, 2017 · Wade Fagen-Ulmschneider

Dijkstra’s Algorithm (Single Source Shortest Path)

Dijkstra’s Algorithm Overview:

 The overall logic is the same as Prim’s Algorithm

 We will modify the code in only two places – both involving
the update to the distance metric.

 The result is a directed acyclic graph or DAG

Pseudocode for Dijkstra’s SSSP Algorithm
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

DijkstraSSSP(G, s):

 Input: G, Graph;

 s, vertex in G, starting vertex of algorithm

 Output: T, DAG with shortest paths (and distances) to s

 foreach (Vertex v : G):

 d[v] = +inf

 p[v] = NULL

 d[s] = 0

 PriorityQueue Q // min distance, defined by d[v]

 Q.buildHeap(G.vertices())

 Graph T // "labeled set"

 repeat n times:

 Vertex m = Q.removeMin()

 T.add(m)

 foreach (Vertex v : neighbors of m not in T):

 if cost(u, v) + d[u] < d[v]:

 d[v] = cost(u, v) + d[u]

 p[v] = m

 return T

Backtracking in Dijkstra

Dijkstra’s Algorithm gives us the
shortest path from a single source to
every connected vertex:

 A B C D E F G H
p NULL A B B F A F C
d 0 10 17 15 12 7 11 21

Examples: How is a single heavy-weight path vs. many light-weight
paths handled?

Ex 1:

Ex 2:

What about undirected graphs?

Dijkstra: What if we have a negative-weight cycle?

Dijkstra: What if we have a minimum-weight edge, without having a
negative-weight cycle?

Dijkstra makes an assumption:

Dijkstra: What is the running time?

Floyd-Warshall Algorithm
Floyd-Warshall’s Algorithm is an alterative to Dijkstra in the presence
of negative-weight edges (but not negative weight cycles).

Pseudocode for Floyd-Warshall’s Algorithm
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

FloydWarshall(G):

 Input: G, Graph;

 Output: d, an adjacency matrix of distances between all

 vertex pairs

 Let d be a adj. matrix initialized to +inf

 foreach (Vertex v : G):

 d[v][v] = 0

 foreach (Edge (u, v) : G):

 d[u][v] = cost(u, v)

 foreach (Vertex u : G):

 foreach (Vertex v : G):

 foreach (Vertex w : G):

 if d[u, v] > d[u, w] + d[w, v]:

 d[u, v] = d[u, w] + d[w, v]

 return d

Running Floyd-Warshall’s Algorithm

CS 225 – Things To Be Doing:

1. Exam #13 (makeup exam) starts Monday
2. MP7 due Monday, Dec. 11 at 11:59pm
3. lab_ml due Sunday, Dec. 10 at 11:59pm
4. Multi-day “puzzle” POTDs available M/W/F

