

#39: Prim's Algorithm

2 5 December 4, 2017 · *Wade Fagen-Ulmschneider*

Kruskal's Algorithm

Pseudocode for Kruskal's MST Algorithm				
1	KruskalMST(G):			
2	DisjointSets forest			
3	foreach (Vertex v : G):			
4	forest.makeSet(v)			
5				
6	PriorityQueue Q // min edge weight			
7	foreach (Edge e : G):			
8	Q.insert(e)			
9				
10	$Graph T = (V, \{\})$			
11				
12	while $ T.edges() < n-1$:			
13	Vertex $(u, v) = Q.removeMin()$			
14	<pre>if forest.find(u) != forest.find(v):</pre>			
15	T.addEdge(u, v)			
16	<pre>forest.union(forest.find(u),</pre>			
17	<pre>forest.find(v))</pre>			
18				
19	return T			

Based on our algorithm choice:

Priority Queue Implementation:	Total Running Time
Неар	$O(n + m) + O(m \lg(n))$
Sorted Array	O(n + m lg(n)) + O(m)

Why would we prefer a Heap?

Why would be prefer a Sorted Array?

This Week is CS Education Week

This week is the 111th birthday of Grace Hopper, a pioneer of the field of Computer Science! As a department, we're letting the world know about Computer Science all week.

Tonight, CS@Illinois and WCS is hosting an Hour of Code event.

Volunteer: Help others program their first line of code! Tonight, Dec. 4, 6:00pm – 8:00pm Basement of Siebel

Partition Property

Consider an arbitrary partition of the vertices on **G** into two subsets **U** and **V**.

Let **e** be an edge of minimum weight across the partition.

Then **e** is part of some minimum spanning tree.

Proof in CS 374!

Partition Property Algorithm

Prim's Algorithm

	Pseudocode for Prim's MST Algorithm				
1	PrimMST(G, s):				
2	Input: G, Graph;				
3	s, vertex in G, starting vertex of algorithm				
4	Output: T, a minimum spanning tree (MST) of G				
5					
6	foreach (Vertex v : G):				
7	d[v] = +inf				
8	p[v] = NULL				
9	d[s] = 0				
10					
11	PriorityQueue Q $//$ min distance, defined by d[v]				
12	Q.buildHeap(G.vertices())				
13	Graph T // "labeled set"				
14					
15	repeat n times:				
16	Vertex m = Q.removeMin()				
17	T.add(m)				
18	foreach (Vertex v : neighbors of m not in T):				
19	if $cost(v, m) < d[v]$:				
20	d[v] = cost(v, m)				
21	p[v] = m				
22					
23	return T				

	Adj. Matrix	Adj. List
Неар		
Unsorted Array		

Running Time of MST Algorithms

Kruskal's Algorithm:

Prim's Algorithm:

Q: What must be true about the connectivity of a graph when running an MST algorithm?

...what does this imply about the relationship between **n** and **m**?

CS 225 – Things To Be Doing:

- 1.
- Exam #12 (programming) starts today MP7 extra credit deadline today (+14 EC) Final lab out this week! 2.
- 3.
- 4. Multi-day "puzzle" POTDs available M/W/F