

#38: Kruskal’s Algorithm

December 1, 2017 · Wade Fagen-Ulmschneider

Depth First Search (DFS) Traversal

DFS Traversal Starting at A, moving clockwise around edges.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

DFS(G):

 Input: Graph, G

 Output: A labeling of the edges on

 G as discovery and back edges

 foreach (Vertex v : G.vertices()):

 setLabel(v, UNEXPLORED)

 foreach (Edge e : G.edges()):

 setLabel(e, UNEXPLORED)

 foreach (Vertex v : G.vertices()):

 if getLabel(v) == UNEXPLORED:

 BFS(G, v)

DFS(G, v):

 setLabel(v, VISITED)

 foreach (Vertex w : G.adjacent(v)):

 if getLabel(w) == UNEXPLORED:

 setLabel(v, w, DISCOVERY)

 q.enqueue(w)

 elseif getLabel(v, w) == UNEXPLORED:

 setLabel(v, w, BACK)

Running Time of DFS:

Labeling:
• Vertex:

• Edge:

Queries:
• Vertex:

• Edge:

Spanning Trees

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

Q: What road should we build first?

Q: What strategy should we use to build the next road?

A Spanning Tree on a connected graph G is a subgraph, G’, such
that:

1. Every vertex is G is in G’ and
2. G’ is connected with the minimum number of edges

This construction will always create a new graph that is a tree
(connected, acyclic graph) that spans G.

A Minimum Spanning Tree is a spanning tree with the minimal
total edge weights among all spanning trees.

 Every edge must have a weight
o The weights are unconstrained, except they must be

additive (eg: can be negative, can be non-integers)

 Output of a MST algorithm produces G’:
o G’ is a spanning graph of G
o G’ is a tree
o G’ has a minimal total weight among all spanning trees

http://csunplugged.org/minimal-spanning-trees/

Kruskal’s Algorithm

Pseudocode for Kruskal’s MST Algorithm
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

KruskalMST(G):

 DisjointSets forest

 foreach (Vertex v : G):

 forest.makeSet(v)

 PriorityQueue Q // min edge weight

 foreach (Edge e : G):

 Q.insert(e)

 Graph T = (V, {})

 while |T.edges()| < n-1:

 Vertex (u, v) = Q.removeMin()

 if forest.find(u) == forest.find(v):

 T.addEdge(u, v)

 forest.union(forest.find(u),

 forest.find(v))

 return T

Kruskal’s Running Time Analysis
We have multiple choices on which underlying data structure to use to
build the Priority Queue used in Kruskal’s Algorithm:

Priority Queue
Implementations:

Heap

Sorted Array

Building
 :7-9

Each removeMin
 :13

Based on our algorithm choice:

Priority Queue
Implementation:

Total Running Time

Heap

Sorted Array

CS 225 – Things To Be Doing:

1. Exam #12 (programming) starts Monday
2. MP7 extra credit deadline on Monday (+14 EC)
3. lab_graphs due Sunday
4. Multi-day “puzzle” POTDs available M/W/F

