

#37: Graph Traversal - DFS

November 29, 2017 · Wade Fagen-Ulmschneider

BFS Graph Traversal

Pseudocode for BFS
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

BFS(G):

 Input: Graph, G

 Output: A labeling of the edges on

 G as discovery and cross edges

 foreach (Vertex v : G.vertices()):

 setLabel(v, UNEXPLORED)

 foreach (Edge e : G.edges()):

 setLabel(e, UNEXPLORED)

 foreach (Vertex v : G.vertices()):

 if getLabel(v) == UNEXPLORED:

 BFS(G, v)

BFS(G, v):

 Queue q

 setLabel(v, VISITED)

 q.enqueue(v)

 while !q.empty():

 v = q.dequeue()

 foreach (Vertex w : G.adjacent(v)):

 if getLabel(w) == UNEXPLORED:

 setLabel(v, w, DISCOVERY)

 setLabel(w, VISITED)

 q.enqueue(w)

 elseif getLabel(v, w) == UNEXPLORED:

 setLabel(v, w, CROSS)

BST Graph Observations

1. Does our implementation handle disjoint graphs? How?

a. How can we modify our code to count components?

2. Can our implementation detect a cycle? How?

a. How can we modify our code to store update a private
member variable cycleDetected_?

3. What is the running time of our algorithm?

4. What is the shortest path between A and H?

5. What is the shortest path between E and H?

a. What does that tell us about BFS?

6. What does a cross edge tell us about its endpoints?

7. What structure is made from discovery edges in G?

d p v Adjacent

0 A A C B D

1 A B A C E

1 A C B A D E F

1 A D A C F H

2 C E B C G

2 C F C D G

3 E G E F H

2 D H D G

Big Ideas: Utility of a BFS Traversal
Obs. 1: Traversals can be used to count components.
Obs. 2: Traversals can be used to detect cycles.
Obs. 3: In BFS, d provides the shortest distance to every vertex.
Obs. 4: In BFS, the endpoints of a cross edge never differ in
distance, d, by more than 1: |d(u) - d(v)| = 1

Depth First Search – A Modification to BFS

Two types of edges: 1.

 2.

Running Time of DFS:

Labeling:
• Vertex:

• Edge:

Queries:
• Vertex:

• Edge:

Pseudocode for DFS
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

BFS(G):

 Input: Graph, G

 Output: A labeling of the edges on

 G as discovery and cross edges

 foreach (Vertex v : G.vertices()):

 setLabel(v, UNEXPLORED)

 foreach (Edge e : G.edges()):

 setLabel(e, UNEXPLORED)

 foreach (Vertex v : G.vertices()):

 if getLabel(v) == UNEXPLORED:

 BFS(G, v)

BFS(G, v):

 Queue q

 setLabel(v, VISITED)

 q.enqueue(v)

 while !q.empty():

 v = q.dequeue()

 foreach (Vertex w : G.adjacent(v)):

 if getLabel(w) == UNEXPLORED:

 setLabel(v, w, DISCOVERY)

 setLabel(w, VISITED)

 q.enqueue(w)

 elseif getLabel(v, w) == UNEXPLORED:

 setLabel(v, w, CROSS)

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

CS 225 – Things To Be Doing:

1. Exam #11 (theory) is ongoing
2. MP7 released (+14 EC due on Monday!)
3. lab_dictionary due Wednesday at 7:00pm
4. lab_graphs starts Wednesday
5. Multi-day “puzzle” POTDs available M/W/F

http://csunplugged.org/minimal-spanning-trees/

