

#35: Graph Implementations – Part 2

2 5 November 17, 2017 · Wade Fagen-Ulmschneider

Pre-Fall Break Grade Update

Your CS 225 grade is updated in Compass 2g as "Fall Break Update".

Overall Class CDF:

Graph Implementation #2: Adjacency Matrix

Operations on an Adjacency Matrix: insertVertex(K key):

removeVertex(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

incidentEdges(Vertex v):

Graph Implementation #2: Adjacency List

Vertex List	Edges
u	a
V	b
w	С
Ζ	d

Operations on an Adjacency List: insertVertex(K key):

removeVertex(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

incidentEdges(Vertex v):

Running Times of Classical Graph Implementations

	Edge List	Adj. Matrix	Adj. List
Space	n+m	n+m	n²
insertVertex	1	n	1
removeVertex	m	n	deg(v)
insertEdge	1	1	1
removeEdge	1	1	1
incidentEdges	m	n	deg(v)
areAdjacent	m	1	min(deg(v), deg(w))

BST Graph Traversal

How do the algorithms compare?

... is one clearly better?

Graph Traversal

Objective: Visit every vertex and every edge in the graph. **Purpose:** Search for interesting sub-structures in the graph.

We've seen traversal before – this is different:

- Exam #11 (theory) starts Monday after break 1.
- MP6 due tonight 2.
- MP7 released today (due last week of classes, +14 EC possible)
 lab_dict ongoing; due Wed. Nov. 29 @ 7pm