

#34: Graph Implementations November 15, 2017 · *Wade Fagen-Ulmschneider*

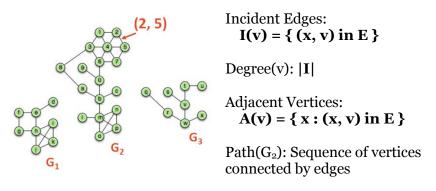
Motivation:

Graphs are awesome data structures that allow us to represent an enormous range of problems. To study these problems, we need:

- 1. A common vocabulary to talk about graphs
- 2. Implementation(s) of a graph
- 3. Traversals on graphs
- 4. Algorithms on graphs

Graph Vocabulary

Consider a graph **G** with vertices **V** and edges **E**, **G**=(**V**,**E**).



Cycle(G₁): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Subgraph(G): **G' = (V', E')**: V' \in V, E' \in E, and (u, v) \in E \rightarrow u \in V', v \in V'

Graphs that we will study this semester include: Complete subgraph(G) Connected subgraph(G) Connected component(G) Acyclic subgraph(G) Spanning tree(G)

Size and Running Times

Running times are often reported by **n**, the number of vertices, but often depend on **m**, the number of edges.

For arbitrary graphs, the minimum number of edges given a graph that is:

Not Connected:

Minimally Connected*:

The maximum number of edges given a graph that is:

Simple:

Not Simple:

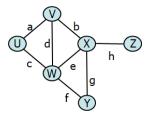
The relationship between the degree of the graph and the edges:

Proving the Size of a Minimally Connected Graph

Theorem: Every minimally connected graph G=(V, E) has |V|-1 edges.

<u>Proof of Theorem</u> Consider an arbitrary, minimally connected graph **G=(V, E)**.

Lemma 1: Every connected subgraph of **G** is minimally connected. *(Easy proof by contradiction left for you.)*



Inductive Hypothesis: For any **j** < |**V**|, any minimally connected graph of **j** vertices has **j-1** edges.

Suppose $|\mathbf{V}| = 1$: **Definition:** A minimally connected graph of 1 vertex has 0 edges. **Theorem:** $|\mathbf{V}|$ -1 edges \rightarrow 1-1 = 0.

Suppose |V| > 1: Choose any vertex **u** and let **d** denote the degree of **u**.

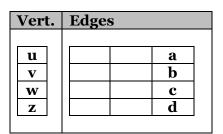
Remove the incident edges of \mathbf{u} , partitioning the graph into _____ components: $\mathbf{C}_{\mathbf{o}} = (\mathbf{V}_{\mathbf{o}}, \mathbf{E}_{\mathbf{o}}), \dots, \mathbf{C}_{\mathbf{d}} = (\mathbf{V}_{\mathbf{d}}, \mathbf{E}_{\mathbf{d}}).$

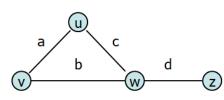
By Lemma 1, every component C_k is a minimally connected subgraph of G.

By our _____:

Finally, we count edges:

Graph Implementation #1: Edge List





Operations:

insertVertex(K key):

removeVertex(Vertex v):

areAdjacent(Vertex v1, Vertex v2):

incidentEdges(Vertex v):

Graph Implementation #2: Adjacency Matrix

Vert.	Edges	Adj. Matrix
u	a	u v w z
V	b	u
w	С	V
Z	d	W
		Z

CS 225 – Things To Be Doing:

- 1. Exam #10 (programming) is ongoing
- 2. MP6 due Friday, Nov. 17 (Friday before break starts)
- 3. lab_dict released today; due Wed. Nov. 29 @ 7pm
- **4.** Daily POTDs

Graph ADT

Data	Functions
Vertices	<pre>insertVertex(K key);</pre>
	<pre>insertEdge(Vertex v1, Vertex v2,</pre>
Edges	K key);
Como doto atmusturo	removeVertex(Vertex v);
Some data structure maintaining the	<pre>removeEdge(Vertex v1, Vertex v2);</pre>
structure between	incidentEdges(Vertex v);
vertices and edges.	<pre>areAdjacent(Vertex v1, Vertex v2);</pre>
	origin(Edge e);
	destination (Edge e) ;

