

#34: Graph Implementations

November 15, 2017 · Wade Fagen-Ulmschneider

Motivation:
Graphs are awesome data structures that allow us to represent an
enormous range of problems. To study these problems, we need:

1. A common vocabulary to talk about graphs
2. Implementation(s) of a graph
3. Traversals on graphs
4. Algorithms on graphs

Graph Vocabulary
Consider a graph G with vertices V and edges E, G=(V,E).

Incident Edges:
 I(v) = { (x, v) in E }

Degree(v): |I|

Adjacent Vertices:
 A(v) = { x : (x, v) in E }

Path(G2): Sequence of vertices
connected by edges

Cycle(G1): Path with a common begin and end vertex.

Simple Graph(G): A graph with no self loops or multi-edges.

Subgraph(G): G’ = (V’, E’):
 V’ ∈ V, E’ ∈ E, and (u, v) ∈ E  u ∈ V’, v ∈ V’

Graphs that we will study this semester include:
 Complete subgraph(G)
 Connected subgraph(G)
 Connected component(G)
 Acyclic subgraph(G)
 Spanning tree(G)

Size and Running Times
Running times are often reported by n, the number of vertices, but
often depend on m, the number of edges.

For arbitrary graphs, the minimum number
of edges given a graph that is:

 Not Connected:

 Minimally Connected*:

The maximum number of edges given a graph that is:

 Simple:

 Not Simple:

The relationship between the degree of the graph and the edges:

Proving the Size of a Minimally Connected Graph

Theorem: Every minimally connected graph G=(V, E) has |V|-1
edges.

Proof of Theorem
Consider an arbitrary, minimally connected graph G=(V, E).

Lemma 1: Every connected subgraph of G is minimally connected.
(Easy proof by contradiction left for you.)

Inductive Hypothesis: For any j < |V|, any minimally connected
graph of j vertices has j-1 edges.

Suppose |V| = 1:
Definition: A minimally connected graph of 1 vertex has 0 edges.
Theorem: |V|-1 edges  1-1 = 0.

Suppose |V| > 1:
Choose any vertex u and let d denote the degree of u.

Remove the incident edges of u, partitioning
the graph into ___ components: C0 = (V0,
E0), …, Cd = (Vd, Ed).

By Lemma 1, every component Ck is a
minimally connected subgraph of G.

By our _____________________:

Finally, we count edges:

Graph ADT

Data Functions
Vertices

Edges

Some data structure
maintaining the
structure between
vertices and edges.

insertVertex(K key);

insertEdge(Vertex v1, Vertex v2,

 K key);

removeVertex(Vertex v);

removeEdge(Vertex v1, Vertex v2);

incidentEdges(Vertex v);

areAdjacent(Vertex v1, Vertex v2);

origin(Edge e);

destination(Edge e);

Graph Implementation #1: Edge List

Vert. Edges

u
v
w
z

 a
 b
 c
 d

Operations:
 insertVertex(K key):

 removeVertex(Vertex v):

 areAdjacent(Vertex v1, Vertex v2):

 incidentEdges(Vertex v):

Graph Implementation #2: Adjacency Matrix

Vert. Edges Adj. Matrix

u
v
w
z

 a
 b
 c
 d

 u v w z
u
v
w
z

CS 225 – Things To Be Doing:

1. Exam #10 (programming) is ongoing
2. MP6 due Friday, Nov. 17 (Friday before break starts)
3. lab_dict released today; due Wed. Nov. 29 @ 7pm
4. Daily POTDs

