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Motivation: 
Graphs are awesome data structures that allow us to represent an 
enormous range of problems.  To study these problems, we need: 

1. A common vocabulary to talk about graphs 
2. Implementation(s) of a graph 
3. Traversals on graphs 
4. Algorithms on graphs 

 

 
Graph Vocabulary 
Consider a graph G with vertices V and edges E, G=(V,E). 

 
Incident Edges: 
    I(v) = { (x, v) in E } 
 
Degree(v): |I| 
 
Adjacent Vertices: 
    A(v) = { x : (x, v) in E } 
 
Path(G2): Sequence of vertices 
connected by edges 
 

Cycle(G1): Path with a common begin and end vertex. 
 
Simple Graph(G): A graph with no self loops or multi-edges. 
 
Subgraph(G): G’ = (V’, E’): 
            V’ ∈ V, E’ ∈ E, and (u, v) ∈ E  u ∈ V’, v ∈ V’ 
 
Graphs that we will study this semester include: 
  Complete subgraph(G) 
  Connected subgraph(G) 
  Connected component(G) 
  Acyclic subgraph(G) 
  Spanning tree(G) 
 
 
 

Size and Running Times 
Running times are often reported by n, the number of vertices, but 
often depend on m, the number of edges. 
 
For arbitrary graphs, the minimum number 
of edges given a graph that is: 
 
       Not Connected: 
  
       Minimally Connected*: 
 
 
The maximum number of edges given a graph that is: 
 
       Simple: 
  
 
 
 
 
 
 
 
       Not Simple: 
 
 
The relationship between the degree of the graph and the edges: 
 
 
 

 
Proving the Size of a Minimally Connected Graph 
 
Theorem: Every minimally connected graph G=(V, E) has |V|-1 
edges. 
 
Proof of Theorem 
Consider an arbitrary, minimally connected graph G=(V, E). 
 
Lemma 1: Every connected subgraph of G is minimally connected. 
(Easy proof by contradiction left for you.) 
 



Inductive Hypothesis: For any j < |V|, any minimally connected 
graph of j vertices has j-1 edges. 
 
Suppose |V| = 1: 
Definition: A minimally connected graph of 1 vertex has 0 edges. 
Theorem: |V|-1 edges  1-1 = 0. 
 
Suppose |V| > 1: 
Choose any vertex u and let d denote the degree of u. 
 
Remove the incident edges of u, partitioning 
the graph into ___ components: C0 = (V0, 
E0), …, Cd = (Vd, Ed). 
 
By Lemma 1, every component Ck is a 
minimally connected subgraph of G. 
 
By our _____________________: 
 
 
 
Finally, we count edges: 
 
 
 
 
 

 
Graph ADT 
 

Data Functions 
Vertices 
 
Edges 
 
Some data structure 
maintaining the 
structure between 
vertices and edges. 

insertVertex(K key); 

insertEdge(Vertex v1, Vertex v2, 

           K key); 

 

removeVertex(Vertex v); 

removeEdge(Vertex v1, Vertex v2); 

 

incidentEdges(Vertex v); 

areAdjacent(Vertex v1, Vertex v2); 

 

origin(Edge e); 

destination(Edge e); 

 

Graph Implementation #1: Edge List 
 
Vert. Edges 
 

u 
v 
w 
z 

 

 
  a 
  b 
  c 
  d 

 

 
 
 
Operations: 
   insertVertex(K key): 
 
   removeVertex(Vertex v): 
 
   areAdjacent(Vertex v1, Vertex v2): 
 
   incidentEdges(Vertex v): 
 
 

 
Graph Implementation #2: Adjacency Matrix 
 

Vert. Edges Adj. Matrix 
 

u 
v 
w 
z 
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  b 
  c 
  d 
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CS 225 – Things To Be Doing: 

1. Exam #10 (programming) is ongoing 
2. MP6 due Friday, Nov. 17 (Friday before break starts) 
3. lab_dict released today; due Wed. Nov. 29 @ 7pm 
4. Daily POTDs 

 


