

#32: Disjoint Sets Implementation

November 10, 2017 · Wade Fagen-Ulmschneider

Implementation #1:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

Operation: find(k)

Operation: union(k1, k2)

Implementation #2 - UpTrees:

• Continue to use an array where the index is the key
• The value of the array is:

• -1, if we have found the representative element
• The index of the parent, if we haven’t found the rep.

element

Example using UpTrees:

4 8 5 6 -1 -1 -1 -1 4 5
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

…what is the error in this table?

Implementation

DisjointSets.cpp (partial)
1

2

3

4

int DisjointSets::find(int i) {

 if (s[i] < 0) { return i; }

 else { return _find(s[i]); }

}

What is the running time of find?

What is the ideal UpTree?

DisjointSets.cpp (partial)
1

2

3

4

void DisjointSets::union(int r1, int r2) {

}

How do we want to union the two UpTrees?

[0] [1] [2] [3]

[0] [1] [2] [3]

[0] [1] [2] [3]

[0] [1] [2] [3]

Building a Smart Union Function

The implementation of this visual model is the following:

6 6 6 8 -1 10 7 -1 7 7 4 5

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Strategy #1: Union by Height

Idea: Keep the height of the tree as small as possible!

Metadata at Root:

After union(4, 7):

6 6 6 8 10 7 7 7 4 5

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Strategy #2: Union by Size

Idea: Minimize the number of nodes that increase in height.
(Observe that the tree we union have all their nodes gain in height.)

Metadata at Root:

After union(4, 7):

6 6 6 8 10 7 7 7 4 5

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

Smart Union Implementation:

DisjointSets.cpp (partial)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

void DisjointSets::unionBySize(int root1, int root2) {

 int newSize = arr_[root1] + arr_[root2];

 // If arr_[root1] is less than (more negative), it is the larger

 // set; we union the smaller set, root2, with root1.

 if (arr_[root1] < arr_[root2]) {

 arr_[root2] = root1;

 arr_[root1] = newSize;

 }

 // Otherwise, do the opposite:

 else {

 arr_[root1] = root2;

 arr_[root2] = newSize;

 }

}

Path Compression:

CS 225 – Things To Be Doing:

1. Exam #10 (programming) starts Monday
2. MP6 due Friday, Nov. 17 (Friday before break starts)
3. lab_heaps due Sunday, Nov. 12
4. Daily POTDs

