

#31: Disjoint Sets

November 8, 2017 · Wade Fagen-Ulmschneider

Theorem: The running time of buildHeap on array of size n is:
 _________.

Last Class:
We proved, by induction, that:
 S(h) = 2S(h-1) + h = 2h+1 - 2 - h

Today, let us finish up talking about running times:

Heap Sort

Algorithm:

1.

2.

3.

Running time?

Why do we care about another sort?

Reflections on Heaps

Disjoint Sets
Let R be an equivalence relation on us where (s, t) ∈ R if s and t have
the same favorite among:
 { ___, ___, ____, ___, ____, ___ }

Examples:

Building Disjoint Sets:

• Maintain a collection S = {s0, s1, … sk}
• Each set has a representative member.
• ADT:

 void makeSet(const T & t);
 void union(const T & k1, const T & k2);
 T & find(const T & k);

Implementation #1:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

Operation: find(k)

Operation: union(k1, k2)

Implementation #2:

• We will continue to use an array where the index is the key
• The value of the array is:

• -1, if we have found the representative element
• The index of the parent, if we haven’t found the rep.

element

Example:

4 8 5 6 -1 -1 -1 -1 4 5
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

…what is the error in this table?

Implementation

DisjointSets.cpp (partial)
1

2

3

4

int DisjointSets::find() {

 if (s[i] < 0) { return i; }

 else { return _find(s[i]); }

}

What is the running time?

DisjointSets.cpp (partial)
1

2

3

4

void DisjointSets::union(int r1, int r2) {

}

CS 225 – Things To Be Doing:

1. Register for CS 225’s Final Exam!
2. Exam #9 (theory exam) is onging
3. MP6 due Friday, Nov. 17
4. lab_dictionary due Sunday, Nov. 12
5. Daily POTDs

[0] [1] [2] [3]

[0] [1] [2] [3]

[0] [1] [2] [3]

[0] [1] [2] [3]

