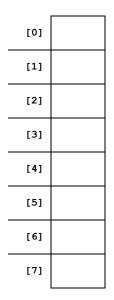


 $\begin{array}{c} \textbf{2} \\ \textbf{5} \end{array} \begin{array}{c} \frac{\#27: \text{Hashing, Part 2}}{\text{October 30, 2017}} \end{array}$

Dictionary ADT in Client Code 1 Dictionary<KeyType, ValueType> d; 2 d[k] = v;

A hash table consists of three things:


1.

2.

3.

Collision Handling Strategy #1: Separate Chaining

Example: $S = \{ 16, 8, 4, 13, 29, 11, 22 \}, |S| = n$ h(k) = k % 7, |Array| = N

Load Factor:

Running time of Separate Chaining:

	Worst Case	SUHA
Insert		
Remove/Find		

Collision Handling Strategy #2: Probe-based Hashing

Example: $S = \{ 16, 8, 4, 13, 29, 11, 22 \}, |S| = n$ h(k) = k % 7, |Array| = N

[0] [1] [2]
[2]
[3]
[4]
[5]
[6]
[7]

Linear	Pro	bing:
--------	-----	-------

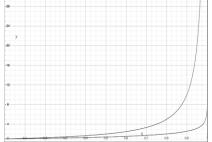
•••

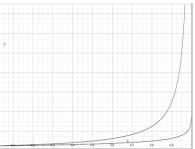
Try h(k) = (k + 0) % 7, if full... Try h(k) = (k + 1) % 7, if full... Try h(k) = (k + 2) % 7, if full...

Linear Probing leads to Primary Clustering

Description:

Double Hashing:


Example: $S = \{ 16, 8, 4, 13, 29, 11, 22 \}, |S| = n$ $h_1(k) = k \% 7, h_2(k) = (5 - k) \% 5, |Array| = N$


[0]	
[1]	
[2]	
[3]	
[4]	
[5]	
[6]	
[7]	

Double Hashing: Try $h(k) = (k + + 0*h_2(k)) \% 7$, if full... Try $h(k) = (k + + 1*h_2(k)) \% 7$, if full... Try $h(k) = (k + + 2*h_2(k)) \% 7$, if full... ...

 $h(k, i) = (h_1(k) + i^*h_2(k)) \% 7$

Running Time Observations:

Linear Probing: Successful: $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})$ Unsuccessful: $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})^2$ Double Hashing: Successful: $1/\alpha * \ln(1/(1-\alpha))$ Unsuccessful: $1/(1-\alpha)$

ReHashing:

What happens when the array fills?

Better question and algorithm:

Running Time:

Linear Probing:

- Successful: ¹/₂(1 + 1/(1-α))
- Unsuccessful: $\frac{1}{2}(1 + \frac{1}{(1-\alpha)})^2$

Double Hashing:

- Successful: 1/α * ln(1/(1-α))
- Unsuccessful: $1/(1-\alpha)$

Separate Chaining:

- Successful: $1 + \alpha/2$
- Unsuccessful: $1 + \alpha$

Running Time Observations:

- 1. As α increases:
- 2. If α is held constant:

Which collision resolution strategy is better?

- Big Records:
- Structure Speed:

What structure do hash tables replace?

What constraint exists on hashing that doesn't exist with BSTs?

Why talk about BSTs at all?

CS 225 – Things To Be Doing:

- 1. Exam #8 (programming, MP4-like and AVL) starts Monday
- 2. MP5 is available now; extra credit +7 deadline is Monday, Oct. 30
- **3.** lab_btree due on Sunday (Oct. 29)
- 4. Daily POTDs