

#25: BTrees Analysis

October 25, 2017

BTree Properties

For a BTree of order m:
1. All keys within a node are ordered.
2. All nodes contain no more than m-1 keys.

3. All internal nodes have exactly one more child than key.
4. Root nodes can be a leaf or have [2, m] children.
5. All non-root, internal nodes have [ceil(m/2), m] children.

6. All leaves are on the same level.

BTree Analysis
The height of the BTree determines maximum number of
____________ possible in search data.

…and the height of our structure:

Therefore, the number of seeks is no more than: ___________.

…suppose we want to prove this!

Remember from our AVL analysis:

 Finding an upper bound on the height (given n) is the same as
finding a lower bound on the nodes (given h).

 Goal: Find a relationship for BTrees between the number of
keys (n) and the height (h).

BTree Strategy:
1. Count the number of nodes, level by level.
2. Add the minimum number of keys per node.
3. Proving a minimum number of nodes provides us with an

upper-bound for the maximum possible height.

1a. The minimum number of nodes for a BTree of order m at each
level is as follows:

 root:

 level 1:

 level 2:

 level 3:
 …
 level h:

1b. The total number of nodes is the sum of all levels:

2. The total number of keys:

3. Finally, we show an upper-bound on height:

So, how good are BTrees?
Given a BTree of order 101, how much can we store in a tree of
height=4?

 Minimum:

 Maximum:

Hashing

Locker Number Name

103

92

330

46

124

…how might we create this today?

Dictionary ADT (Part 2)

Dictionary.h
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

#ifndef DICTIONARY_H

#define DICTIONARY_H

template <class K, class V>

class Dictionary {

 public:

 void insert(K & k, V & v);

 void remove(const K & k);

 V & find(const K & k) const;

 private:

};

#endif

Goals for Understanding Hashing:

1. We will define a keyspace, a (mathematical) description of
the keys for a set of data.

2. We will define a function used to map the keyspace into a
small set of integers.

CS 225 – Things To Be Doing:

1. Exam #7 (theory exam) is live!
2. MP5 is available now; extra credit +7 deadline is Monday
3. lab_btree starts today
4. Daily POTDs

