CS , 2	#15: Trees
2 5	October 2, 2017

Queue Iterator:

QueueIter.h	
4	template <class qe=""></class>
5	class Queue {
6	public:
7	class QueueIterator :
	<pre>public std::iterator<std::bidirectional_iterator_tag, t=""> {</std::bidirectional_iterator_tag,></pre>
8	public:
9	QueueIterator(unsigned index);
10	QueueIterator& operator++();
11	<pre>bool operator==(const QueueIterator &other);</pre>
12	<pre>bool operator!=(const QueueIterator &other);</pre>
13	QE& operator*();
14	<pre>QE* operator->();</pre>
15	private:
16	<pre>int location_;</pre>
17	
18	};
19	
20	
21	/* */
22	
23	private:
24	<pre>QE* arr_; unsigned capacity_, count_, entry_, exit_;</pre>
25	};

Does an instance of a QueueIterator have access to the Queue arr_?

Two big takeaways:

1.

2.

Trees!

"The most important non-linear data structure in computer science." - David Knuth, The Art of Programming, Vol. 1

A tree is:

- What's the longest "word" you can make using the **vertex** labels in the tree (repeats allowed)?
- Find an **edge** that is not on the longest **path** in the tree. Give that edge a reasonable name.
- One of the vertices is called the **root** of the tree. Which one?
- Make a "word" containing the names of the vertices that have a **parent** but no **sibling**.
- How many parents does each vertex have?
- Which vertex has the fewest children?
- Which vertex has the most **ancestors**?
- Which vertex has the most **descendants**?
- List all the vertices is b's left **subtree**.
- List all the **leaves** in the tree.

Definition: Binary Tree

A *binary tree* **T** is either:

<u>Tree Property</u>: Perfect

