
Cloud Computing

● You just wrote a website or backend, and it works great on your laptop
● How do you get it to the public?

Deploying your application

● You just wrote a website or backend, and it works great on your laptop
● How do you get it to the public?
● Old solution: buy a server. Run your application there.

○ What are some problems with this?

Deploying your application

● You just wrote a website or backend, and it works great on your laptop
● How do you get it to the public?
● Old solution: buy a server. Run your application there.

○ What are some problems with this? Space, heat, upfront cost, etc
○ What do you do when you have too many users for one server to handle?

Deploying your application

● You just wrote a website or backend, and it works great on your laptop
● How do you get it to the public?
● Old solution: buy a server. Run your application there.

○ What are some problems with this? Space, heat, upfront cost, etc
○ What do you do when you have too many users for one server to handle?
○ Scale vertically or horizontally: vertical scaling means making your one server

more powerful, and horizontal scaling means adding more servers and sharing
load between them

Deploying your application

● You just wrote a website or backend, and it works great on your laptop
● How do you get it to the public?
● Old solution: buy a server. Run your application there.

○ What are some problems with this? Space, heat, upfront cost, etc
○ What do you do when you have too many users for one server to handle?
○ Scale vertically or horizontally: vertical scaling means making your one server

more powerful, and horizontal scaling means adding more servers and sharing
load between them

○ Problem: this is expensive! And demand is variable!

Deploying your application

● Scaling and hardware failure are transparent to your application
○ Servers can fail and you won’t know, and neither will your users!

● Physical hardware and datacenter space is expensive, and demand fluctuates
● More time to focus on improving your project!
● There are times you should handle this yourself

○ Strong latency/performance requirements (i.e. HFT)
○ Consistent load, or you already have datacenter space

Why let cloud providers handle scaling?

● Problem: we have a bunch of users but only one computer

Cloud Networking - Load Balancing

● Problem: we have a bunch of users but only one computer
● Solution: multiple computers. But how?

Cloud Networking - Load Balancing

● Problem: we have a bunch of users but only one computer
● Solution: multiple computers. But how?
● A load balancer runs on one computer and sends users to multiple computers

“behind” it
○ Load balancer is extremely efficient so it can run on only one (sometimes

powerful) computer and serve many users
● Popular load balancers: NGINX, Traefik, Apache, …

Cloud Networking - Load Balancing

Load Balancer

Server 1 Server 2 Server 3

● Offerings are generally in one of X subsets:
○ Infrastructure as a Service

■ Rent a server (+network access/etc) for $x per month
■ Most flexible, generally you need to scale yourself
■ Examples: EC2, DigitalOcean

○ Platform as a Service
■ Rent server(s) + software running on top of them for $x per month
■ Generally handles scaling your software across the servers for you
■ Examples: AWS EKS

○ Software as a Service
○ Functions as a Service

“As a Service”

● Offerings are generally in one of X subsets:
○ Functions as a Service

■ Pay a small price (<1 cent) each time somebody talks to your application’s
server

■ No control over hardware, scales automatically
■ Easiest to set up, least versatile

○ Software as a Service
■ Pay for a company to run their software for you (i.e. Trello)

“As a Service”

● Every computer on a network has a unique IP address
○ Two types: local and public (public addresses are internet accessible, local are

not!)
○ Two versions: IPv4 and IPv6. We ran out of IPv4 addresses so IPv6 is gaining

adoption
● DNS takes a domain name (like security.azure.com) and converts it to an IP address

○ Question: how do we balance load geographically? We don’t want Netflix users
in South America to load their movies all the way from Canada

Cloud Networking

● Every computer on a network has a unique IP address
○ Two types: local and public (public addresses are internet accessible, local are

not!)
○ Two versions: IPv4 and IPv6. We ran out of IPv4 addresses so IPv6 is gaining

adoption
● DNS takes a domain name (like security.azure.com) and converts it to an IP address

○ Question: how do we balance load geographically? We don’t want Netflix users
in South America to load their movies all the way from Canada

○ Answer: anycast! One domain can be resolved to multiple IP addresses, and the
closest (by some metric) is chosen

○ Question: how can we use the cloud to take advantage of this?

Cloud Networking

● Large cloud providers operate data centers across the world, and group each area
into a region
○ You should put your code close to your users for better response times!
○ Start with one region, and expand as your application grows
○ Note it is harder to autoscale your application across multiple until you are

operating at a very large scale
● Regions make your deployment more complicated

○ Each region generally has its own local network, so communication between
regions is harder

○ Different prices for different regions, costs to transfer data between regions
○ Load balancing is done on a per-region basis (load is shared across regions via

anycast)

Cloud Networking - Regions

