
Readability & Design
Considerations

● Clean code
● Commenting
● Design Considerations
◦ Functions
◦ Classes

Today’s Lecture

“Developers should leave the code base cleaner than they
found it . Just as boy scouts are taught to leave a campsite
cleaner than they found it, software developers should strive to
improve the codebase with every change they make“

Boy Scouts rule

◦ Simple and expressive
◦ Well Organized
◦ Readable and Understandable
◦ Testable and reliable
◦ Efficient and Optimized

Clean Code

Purpose of commenting

◦ Who is your audience?
⚫ other developers
⚫ your future self

◦ Explain the intent of the code
◦ Clarify complex logic
◦ Provide context to future developers to modify or debug code

Other uses
● Document non obvious assumptions & constraints

Commenting

A comment that clarifies complex logic, explains design
decisions or tradeoffs , documents non obvious requirements.

Good comments provide relevant information that cannot be
inferred from the code itself

Good Comment

A comment that explains the intent of code,its purpose
and it’s expected behaviour

// Calculates the sum of all elements in the array.

int sum = 0;
for (int i = 0; i < arr.length; i++) {
 sum += arr[i];
}

Explanation of Intent

A Comment that clarifies complex logic such as a tricky conditional or a
loop

// Loop through all elements in the array, but skip any that are null or empty.

for (int i = 0; i < arr.length; i++) {
 if (arr[i] == null || arr[i].isEmpty()) {
 continue;
 }
 // Process the non-null, non-empty element here.
}

Clarification of Code

A comment that warns of potential side effects or
consequences of using the code*

// Be careful when calling this method with large inputs, as it can cause a stack overflow.

public int recursiveFunction(int n) {
 if (n <= 0) {
 return 0;
 }
 return n + recursiveFunction(n - 1);
}

*where possible, be more specific about what is considered “large”

Warning of Consequences

A comment that highlights areas of code that require
further work or improvements

// TODO: Add error handling for invalid inputs.

public int divide(int x, int y) {
 return x / y;
}

Marker in Code

Summary comments convey the meaning of the entire code at a
glance so developers do not have to read the entire code block

/**
 * This function calculates the distance between two points on a 2D plane
 * using the Pythagorean theorem: d = sqrt((x2 - x1)^2 + (y2 - y1)^2).
 * @param x1 the x-coordinate of the first point
 * @param y1 the y-coordinate of the first point
 * @param x2 the x-coordinate of the second point
 * @param y2 the y-coordinate of the second point
 * @return the distance between the two points
 */
public double calculateDistance(double x1, double y1, double x2, double y2) {
 double xDiff = x2 - x1;
 double yDiff = y2 - y1;
 double sumOfSquares = (xDiff * xDiff) + (yDiff * yDiff);
 return Math.sqrt(sumOfSquares);
}

Summary of Code

A comment that reiterates the code, contains outdated or
incorrect information*, explains obvious or trivial code , or adds
irrelevant or inappropriate content.

* while it’s important to keep comments up-to-date, it’s common that
this is forgotten. Avoid comments that can easily become irrelevant if left
unmodified when code changes.

Bad Comment

Comments that simply repeat the code in a slightly
different way

// Add one to the value of x
x = x + 1;

Too many comments of this kind results in “comment
pollution” which detracts from the quality of the code
base

Redundant Comments

Comments that are incorrect or no longer true

// This function is optimized for speed
// and doesn't need any error checking

function process_data(data) {
 // do something with data
}

A better comment would ask the user to call the function with data that is already pre
validated

Misleading Comments

When developers use comments instead of git for version control of the file

// 2002-07-20 - Bob: Changed the calculation of the tax rate to account for
// the new tax laws in Maine. Taxes should now be
// calculated correctly for all residents.
// 2002-06-19 - Rob: Created the function to calculate the tax rate to account
//

Journal Comments

Comments used to separate sections of code which can
be usually achieved through better organization

// ***** BEGIN MAIN METHOD *****
public static void main(String[] args) {
 // code here
}
// ***** END MAIN METHOD *****

Position Markers

Example from “recover.c”

if (track >= 1024)
 printf("%i WARNING (cylinder) in

%s\n",status,filename);
 else
 write_count =

write(outFile,io_buff,bytes_2_write);

Comment the Why, not the How

Example from “recover.c”

// this BIOS can not read tracks greater than 1024 without special drivers
// print warning but keep recovering the file anyway
 if (track >= LAST_LEGAL_TRACK)
 printf("%i WARNING (cylinder) in %s\n",status,filename);
 else
 write_count = write(outFile,io_buff,bytes_2_write);

 *notice the literal or magic number “1024” replaced with “LAST_LEGAL_TRACK”

Comment the Why, not the How

● Say what the routine WON’T do, mention permissible
input values

● Document global effects (if any)
● Side effects (are dangerous)
● Create or destroy anything?
● Document source of algorithms
● Avoid enormous comment blocks
◦ I like some comments before every routine for visual

delineation at the very least

Commenting Routines

● Certainly need a useful amount of commenting
● Avoid “comment pollution”
◦ If it takes too much time to wade through comments then

there’s too much
◦ If there’s as much or more comments than code then

there’s too much
◦ Rule of thumb: 1 line of comment for 10 lines of code
◦ Do not count lines and then add comments every 10th line!

Balance

Design Considerations

● Functions should be small, do one thing and do it well
● Should have descriptive names that accurately reflect their purpose
● Limited number of arguments:
◦ ideally 0 or one.
◦ More than 3 makes them difficult to understand
◦ seven is considered the upper limit (McConnell)

● Should have minimal side effects , meaning they do not modify any
state outside of their scope

● Should follow single responsibility principle, they should have only one
reason to change

● Organized in a logical order with higher level functions calling lower
level functions

● Avoid using flag arguments (Catch all functions)

Design at the Function level

Functions should be small, do one thing and do it well

// Bad Example
function calculateAndPrintInvoice() {
 // A long list of calculations and printing statements
}

// Good Example
function calculateInvoice() {
 // A short list of calculations
 return invoice;
}

function printInvoice(invoice) {
 // A short list of printing statements
}

Do only one thing

Limited number of arguments ideally 0 or one. More than 3 makes them
difficult to understand

// Bad Example
function createPerson(firstName, lastName, age, streetAddress, city, state, zipCode) {
 // Creating person object with all arguments
}

// Good Example
function createPerson(personData) {
 // Creating person object with personData object
}

Minimal number of arguments

Should have minimal side effects , meaning they do not modify any state
outside of their scope

// Bad Example
function updateAge() {
 user.age = user.age + 1;
}

// Good Example
function getNextAge(age) {
 return age + 1;
}

Avoid side effects

Organized in a logical order with higher level functions calling lower level
functions

// Bad Example
function doSomethingComplicated() {
 // A long list of steps, each one with multiple levels of abstraction
}

// Good Example
function doSomethingComplicated() {
 stepOne();
 stepTwo();
}
function stepOne() {
 // One level of abstraction
}
function stepTwo() {
 // One level of abstraction
}

One Level of Abstraction

Organized in a logical order with higher level functions calling lower level
functions

// Bad Example
function calculateShippingCosts(order) {
 switch(order.shippingMethod) {
 case 'UPS':
 // Calculate UPS shipping costs
 break;
 case 'USPS':
 // Calculate USPS shipping costs
 break;
 case 'FedEx':
 // Calculate FedEx shipping costs
 break;
 default:
 // Throw an error
 }
}

Avoid catch all functions

// Good Example
function calculateShippingCostsUPS(order) {
 // Calculate UPS shipping costs
}

function calculateShippingCostsUSPS(order) {
 // Calculate USPS shipping costs
}

function calculateShippingCostsFedEx(order) {
 // Calculate FedEx shipping costs
}

● Your designs must consist of highly cohesive, loosely
coupled components (e.g. your design is highly
normalized) to make testing easier (this also makes
evolution and maintenance of your system easier too).

(Beck)

Design at the class level

it’s not uncommon to “put off” exception handling and
error handling.

Front load your development. Spend the time early to
avoid bigger hassles later. Skipping these things usually
causes more work at a later time than doing it right early
on.

Don’t put off until tomorrow…

Cohesion is a measure of how strongly-related and
focused the responsibilities of a single class are

Coupling is the degree to which each program module
relies on each one of the other modules

Cohesion and Coupling

http://en.wikipedia.org/wiki/Class_(computer_science)

public class Stack {
 private int[] elements;
 private int top = -1;

 public Stack(int maxSize) {
 elements = new int[maxSize];
 }

 public void push(int element) {
 if (top >= elements.length - 1) {
 throw new StackOverflowException();
 }
 elements[++top] = element;
 }

 public int pop() {
 if (top < 0) {
 throw new StackUnderflowException();
 }
 return elements[top--];
 }
}

High Cohesion
 The Stack class is highly
cohesive because it has a
clear and focused
responsibility - managing a
stack of elements. All of its
methods are related to this
responsibility and work
together to achieve it.

public class DataProcessor {
 public void readDataFromFile(String fileName) {
 // code to read data from file
 }

 public void processData() {
 // code to process data
 }

 public void writeDataToFile(String fileName) {
 // code to write data to file
 }

 public void sendDataToServer(String serverUrl) {
 // code to send data to server
 }
}

Low Cohesion
DataProcessor class is loosely
cohesive because it has multiple
responsibilities that are not
closely related to each other. It
has methods for reading data
from a file, processing the data,
writing the data to a file, and
sending the data to a server.
These responsibilities could be
split up into separate classes
that each have a single,
well-defined responsibility.

public class OrderProcessor {
 private InventorySystem inventory;
 private BillingSystem billing;

 public OrderProcessor() {
 inventory = new InventorySystem();
 billing = new BillingSystem();
 }

 public void processOrder(Order order) {
 // Update inventory
 inventory.update(order);

 // Charge customer
 billing.charge(order);
 }
}

Tight Coupling
The OrderProcessor class is
highly coupled with the
InventorySystem and
BillingSystem classes. It
directly creates instances of
these classes and calls
methods on them to process
orders. This makes it difficult
to modify or test the
OrderProcessor class
without also modifying or
testing the InventorySystem
and BillingSystem classes.

public interface IOrderProcessor {
 void processOrder(Order order);
}

public class InventorySystem implements IOrderProcessor {
 public void processOrder(Order order) {
 // Update inventory
 }
}

public class BillingSystem implements IOrderProcessor {
 public void processOrder(Order order) {
 // Charge customer
 }
}

the OrderProcessor class is loosely coupled with the InventorySystem and BillingSystem classes. It depends
only on the IOrderProcessor interface, which is implemented by the InventorySystem and BillingSystem
classes. This allows for easier modification and testing of the OrderProcessor class, as well as easier
substitution of different implementations of the IOrderProcessor interface.

Loose Coupling
public class OrderProcessor {
 private IOrderProcessor inventory;
 private IOrderProcessor billing;

 public OrderProcessor(IOrderProcessor
inventory, IOrderProcessor billing) {
 this.inventory = inventory;
 this.billing = billing;
 }

 public void processOrder(Order order) {
 // Update inventory
 inventory.processOrder(order);

 // Charge customer
 billing.processOrder(order);
 }
}

 “The biggest piece of code is small enough that you
can describe, comment, write and test without
thinking much about how to do it” - M.Woodley

Following the principles discussed in this lecture
will help you write code according to this rule

General Rule of Thumb

