

Lecture Handout #7

February 9, 2016

Data Source: Historic grade data at UIUC
Austin Walters filed a Freedom of Information Act (FOIA) request to
get historical grade distributions for all classes at UIUC from 2010-
2014.

CS 205 Workbook Branch
A new release branch has been created for this experience. You can
find the initial files in the branch exp_historicGrades.

Recall that every workbook project is set up with three directories:







Inside of py/compute.py, add the lines to read the CSV file:

1:

2:

3:

f = open("res/Fall.2014.csv")

reader = csv.DictReader(f)

data = [row for row in reader]

The next line of Python will loop through each row in the data file:

5: for row in data:

After this line, what code can be used to:

 Access the average grade?

 Access the full course name (eg: “CS 205”)?

Puzzle #1:

Find the row with the minimum GPA. What course was it and who
was the instructor?

Your Courses
Let’s consider your courses! What non-special topic course are you
taking this semester (eg: “CS 205”)?

My Courses

In order to search for these courses, create an array of dictionaries of
these courses. Each dictionary should contain one element called
courseNumber. For example, if your courses are CS 125 and CS 173:

myCourses = [

 { "courseNumber": "CS 125" },

 { "courseNumber": "CS 173" }

]

The rationale for this setup is that, when we find a myCourses inside
of data, we can add to that dictionary. One entry may become:

 { "courseNumber": "CS 125",

 "averageGrade": 3.605 }

Puzzle #2:

Find the grade information all of your courses from Fall 2014. Which
one of your courses had the lowest average grade in Fall 2014?

Advanced questions/ideas about the data?











Histograms: Categorizing continuous data in buckets
One classic technique to understanding the bigger picture about the
data is to use a histogram. The workbook already has a histogram
visualization already created; you just need to create the Python code
to output the data in the way that the visualization expects it!

Specifically, the visualization is looking for the following JSON:

[

 { "rangeTitle": "A+", "count": 385 },

 { "rangeTitle": "A", "count": 472 },

 { "rangeTitle": "A-", "count": 215 },

 ...

]

Since each element of the array is a dictionary, it is okay to have
additional elements in each dictionary. It is up to you to decide
how you want to “count” each range; there are multiple ways that one
might think of counting the data.

Puzzle #3:

Create the JSON expected by the visualization and save it as
"res/histogram.json”. If your format is correct, you will see the
visualization in the workbook!

