

Lecture Handout #4

January 28, 2016

Python Pattern: Sorting a Dictionary
Dictionaries (by default) in Python are un-ordered, so we need to use
an OrderedDict to store a sorted (ordered) dictionary. This pattern
gets a little complex, but always works.

1:

2:

3:

4:

5:

6:

7:

8:

Import the OrderedDict

from collections import OrderedDict

...

Assume a myDictionary with data

myDictionary = { ... }

sortedDictionary = OrderedDict(

 sorted(myDictionary. items(),
 key = lambda: d: d[1]["sort field"]

)

)

By default, the keys are sorted in ascending order. You can reverse
this by placing this argument into the sorted function (Line 8):

 reverse = True

Diversity within Majors
Inside of Computer Science, a lot has been written about the need and
benefits of diversity. If we assume that the optimal population for
every major is 50% women and 50% men, what majors are doing well?

Python Pattern: An Array of Dictionaries
Next week, we will start working with d3.js. The d3.js library is
optimized to work with an array of dictionaries.

Right now, our data is a single dictionary. To convert a dictionary to
an array of dictionaries (where each key becomes an entry in the
array), the following Python pattern will help:

1:

2:

3:

4:

5:

6:

list = []

for key in myDictionary:

 list.append({

 "key_name": key,

 "data": myDictionary[key]

 })

An application of this pattern with our diversity data:

Python Pattern: Writing Python to a JSON File
Finally, for use in d3.js, we will write (or “serialize”) our array of
dictionaries to a JSON format using the last major Python pattern:

1:

2:

3:

4:

5:

6:

import json

outdata = json.dumps(list, indent=2)

outfile = open("out.json", "w")

outfile.write(outdata)

outfile.close()

