

Lecture Handout #3

January 26, 2016

Data Set: Majors at UIUC
The data set for this week will focus on the population of different
majors at UIUC. The data set contains 11 columns, with three being
most relevant to our analysis:

 Fall, the year of the Fall semester the data was collected

 Major Name, the name of the major

 Total, the total number of majors at that time

Python Pattern: Reading a CSV File
Last week, we developed the CSV reading pattern we will reuse:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

Required import:

import csv

Read the rows of the file:

f = open("fileName.csv")

reader = csv.DictReader(f)

data = [row for row in reader]

Loop through each row of data

for row in data:

 print(row["Major Name"])
...from the CS 205 Guidebook: “Reading a CSV File”

Q: How many students were at UIUC each year?

 Option #1:

 Option #2:

 Option #3:

Using dictionaries to store categorized data
Dictionaries are convenient structures to store all the information
about a specific category in one place.

Variable Key
Must be string

Value
Can be anything (array, dictionary, etc)

yearsDict “2015” …any data about 2015…
“2014” …any data about 2014…
“2013” …any data about 2013…
“2012” …any data about 2012…
… …

Python Pattern: Dictionaries for Categorized Data
Any time you want to categorize data into a dictionary, there is
another Python pattern to follow.

The following instance of the pattern sums the values into our
dictionary:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

Create an empty dictionary

myDictionary = {}

Loop through each row of data

for row in data:

 # Pull out the key, ensure it is a string

 key = str(data["Field for key"])

 # Check if the key doesn’t exist in the dict

 if key not in myDictionary:

 # If not, initialize it

 myDictionary[key] = 0 # or whatever

 # Add the row to our dictionary

 myDictionary[key] += row["Total"]

...from the CS 205 Guidebook: “Reading a CSV File”

What was UIUC’s student population in 2005?

 …in 2015?

 …what was the percent growth?

Puzzle #1: Find the growth rate of all majors.
Examples:

 “Computer Science” grew from 1064 majors in 2005 to 1640
majors in 2015 (a growth rate of +54.14%).

 “French” shrank from 102 majors in 2005 to only 42 majors
in 2015 (a growth rate of -58.82%).

Observations about solving the problem:

Puzzle #1(a): A function to populate growth rates
In order to find growth rates, it is great to decompose this logic into a
function whose only purpose is to find growth rates.

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

def populateGrowthRates(d):

 # d is a dictionary in the format

 # d = { "2015": { "French": 32,

 # "Dance": 24, ... },

 # "2014": { "French": 37,

 # "Dance": 26, ... }

 # ... }

 # Loop through 2015 majors

 for _________ in ____________:

 # Check if major exists in 2005:

 if _________________________________:

 # If so, compute growth rate:

 else:

 # If not, give a default value

Python Pattern: Sorting a Dictionary
Dictionaries (by default) in Python are un-ordered, so we need to use
an OrderedDict to store a sorted (ordered) dictionary. This pattern
gets a little complex, but always works.

1:

2:

3:

4:

5:

6:

7:

8:

Import the OrderedDict

from collections import OrderedDict

...

Assume a myDictionary with data

myDictionary = { ... }

sortedDictionary = OrderedDict(

 sorted(myDictionary. items(),
 key = lambda: d: d[1]["sort field"]

)

)

By default, the keys are sorted in ascending order. You can reverse
this by placing this argument into the sorted function (Line 8):

 reverse = True

What department had the largest growth rate?

What was the growth rate of your department?

Before our next class…

1. Continue to develop Python skills by completing the first
lessons (14 parts) in the following on codecademy.com:

 Units 5: “Python Lists and Dictionaries”

