


# Data Set: Demographics by Department at UIUC

The dataset for this week involves demographic data from every department at UIUC from 2005-2015. Exploring the dataset, what are important columns in the data?

| Column Name | Description/ Format |
|-------------|---------------------|
| Fall        |                     |
|             |                     |
|             |                     |
|             |                     |
|             |                     |
|             |                     |

### **Python Pattern: Reading a CSV File**

Last week, we developed the CSV reading pattern we will reuse:

```
1: import csv
2:
3: # Read the rows of the file:
4: with open("fileName.csv") as f:
5: reader = csv.DictReader(f)
6: data = [row for row in reader]
7:
8: # Loop through each row of data
9: for row in data:
10: print( row["Major Name"] )
```

### Q: How many students were at UIUC each year?

- Option #1:
- Option #2:

#### **Python Dictionaries**

Dictionaries are convenient structures to store all the information about a specific category in one place.

### countByYear →

| "2015" | "2014" | "2013" | "2012" | "2011" | "2010" |     |
|--------|--------|--------|--------|--------|--------|-----|
| 44,087 | 43,603 | 43,398 | 42,883 | 42,606 | 41,949 | ••• |

We can access a specific year by indexing into our dictionary:

```
1: # Reading a value from a dictionary:
2: print(countByYear["2015"]) # prints 44087
3:
4: # Setting/adding a value in a dictionary:
5: countByYear["2015"] = 100
6: countByYear["2015"] += 200
```

## **Python Pattern: Dictionaries for Categorized Data**

Create a Python program that finds the student count for every year:

```
# Create an empty dictionary:

for row in data:
    # Pull out useful fields:

# Initialize our dictionary entry if it does
    # not already exist in our dictionary:

# Update our dictionary with the current row:
```

#### **Multi-Level Dictionaries**

A dictionary can contain any type of data within it, including other dictionaries! Counting the number of students in each major by year requires a multi-level dictionary:

#### majors -

| "2015" "2014" | "2015" "2014" | ••• |
|---------------|---------------|-----|
|               |               |     |

## **Python: Programming Multi-Level Dictionaries**

Create a Python program that finds the student count for every year:

| # Create an empty dictionary: |
|-------------------------------|
| for row in data:              |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |
|                               |

## **Python Lists**

Besides dictionaries, a list is the other major data structure that will be extremely useful for data analysis and visualization. A list is an **ordered collection** of data:

## majorsList

| [0] | { | "major": | "Undeclared", "students": 2790 }       |
|-----|---|----------|----------------------------------------|
| [1] | { | "major": | "Computer Science", "students": 1640 } |
| [2] | { | "major": | "Psychology", "students": 1480 }       |
| [3] | { | "major": | "Accountancy", "students": 1422 }      |
|     |   |          |                                        |

### **Creating Lists form Dictionaries**

Similar to dictionaries, the general pattern is to start with an empty list and add data to the list from your dictionary:

**Puzzle #1:** What major grew the most between 2010 and 2015... ...by percentage? ...by number of students?

**Puzzle #2:** List every major by percentage growth, sorting the majors by the largest/smallest percentage growth.