

Lecture Worksheet

November 17, 2015

Generating Permutations: Recursive Solution
Last time, we generated a distances matrix that contained the
distances from cities in our input:

distances New York, NY Chicago, IL San Francisco, CA

New York, NY 0 1,271,382 4,677,494

Chicago, IL 1,270,079 0 3,431,581

San Francisco, CA 4,675,822 3,429,242 0

As a reminder, we set this up as a dictionary of dictionaries so that we
can access any distance with the following code:

distances["New York, NY"]["Chicago, IL"]

The puzzle that we left with is how we generate every permutation?
To set up this problem, we will use a reclusive function with two
arguments:

 path: The current path through the graph (as a List)

 unused: The cities not part of the current path (as a List)

Every recursive solution almost always has three components:

1. Recursive Case: If there is at least one unused city, loop
through all the unused cities. For each of these unused cities,
make a recursive call with the city appended to the end of the
path list and removed from the unused list.

Visually, we can represent the recursive step as the following tree:

The second step to a recursive solution is the base case:
2. Base Case: When no cities remain in the unused list, return

the distance and the path.
3. Reduction: When multiple results are returned, return the

minimum of all the results.

Let’s program the makePath function to complete this recursion:

 def makePath(path, unused, distances):

 if len(unused) == 0:

 # Base case

 else:

 # Reduction result

 min = None

 # Reclusive Case

 for city in unused:

 return min

