

Lecture Worksheet

November 12, 2015

Going on a Road Trip!
One of the most shared geographical visualization recently that I have
noticed have been road trips! They can take on various forms:

 Shortest road trip to visit every state capital

 Optimal route to visit every national park

 Best route to visit the most interesting city in every state

Traveling Salesman Problem (TSP)
In Computer Science (and Mathematics), the Traveling Salesman
Problem (TSP) asks

 “What is the shortest path to visit every location exactly once?”

Consider the following graph:

Solution #1: Greedy Path Algorithm

1. Start at a random node
2. Find the edge from your current node to an unvisited node that

has the minimal weight
3. Repeat Step 2 until a complete path is found

What is the shortest path using a greedy path algorithm?

Is this the shortest path?

Solution #2: Brute Force Algorithm
One of the only ways to test if our shortest path is really the shortest
path is to try every single path. This can be a lot of work:

Possible Path Total Distance

A B C D E F G

…

A B D E C G F

A B E D C G F

…

B A E D C G F

…

C E D B A G F

…

How many paths are there?
In the worst case, the graph may be fully connected – every node is
connected to every other node via an edge:

Fully connected

graph with 2 nodes
Fully connected

graph with 3 nodes
Fully connected

graph with 4 nodes

Thinking about these graphs, how many Traveling Salesman Problem
paths need to be checked to find a solution?
.

Nodes: 2 3 4 n 50

Paths:

Source: http://xkcd.com/399

Task #1: Construct a 2D array from the Google API data
Google Distance Matrix API provides us the distance between our
locations in a set format:

{ ...,

 "rows": [{ "elements": [

 { "distance": { "value": 1234 } },

 { "distance": { "value": 3456 } },

 { "distance": { "value": 4321 } },

] },

 { "elements": [

 { "distance": { "value": 1234 } },

 { "distance": { "value": 3456 } },

 { "distance": { "value": 4321 } },

] },

 ...

]

}

The only thing we are guaranteed is that the number of rows and the
number of elements is always equal to the number of cities. Our goal
is to construct the following:

distances New York, NY Chicago, IL San Francisco, CA

New York, NY … … …

Chicago, IL 1270079 … …

San Francisco, CA … … …

…so distances["New York, NY"]["Chicago, IL"] is 789.2.

Puzzle #1: Suppose we have the following Python code that loops
through all pairs of cities, create the

1

2

3

4

5

distances = defaultdict(dict)

for i, origin in enumerate(cities):

 for j, dest in enumerate(cities):

 matrix[origin][dest] = json_________________________

Puzzle #2: The next step is to create every possible route between
the cities and calculate their distances. To do this, we will build an
algorithm that is simple to describe, but recursively defined.

We’ll call the function makePath and it will take three arguments:

 path: A list of the cities in our path

 unused: A list of cities not yet used in our path

 matrix: The distance matrix for calculations

The makePath function should do the following:

1. If unused is empty, we have a complete path.

a. Calculate the distance between the cities in the path

b. Return the distance calculated
2. If ununsed is not empty:

a. Create a variable to store the minimum distance (you
can start it equal to 999999) and path

b. Loop through each unused city, each time:
i. Add the currently visited unused city to a copy

of the path

ii. Remove the unused city from a copy of the
unused list (Google how to do it!)

iii. Calling makePath with the new path/unused,

storing the return value in a variable
iv. Checking if the return variable is smaller than

the minimum variable; if so, update minimum
c. After looping through each city, return the minimum

distance and path. (Python tuples help here)

 def makePath(path, unused, matrix):

 if len(unused) == 0:

 # Calculate distance

 else:

 # Reclusively find the minimum

