

Lecture Worksheet

November 19, 2015

Solving Tic-Tac-Toe
When an optimal player plays tic-tac-toe, they can never lose. With a
simple algorithm, we can make a tic-tac-toe game where you, the
programmer, can never beat your own algorithm!

Representing the Board State
There are infinite ways to represent the current board (“the board
state”) in our algorithm. Arguably one of the simplest is to do it as a
simple list of characters:

X X O


[0] [1] [2]

X O [3] [4] [5]

O O X [6] [7] [8]

In the above figure, the board would be:
 ["X", "X", "O", "X", "O", "-", "O", "O", "X"]

…this board state is a win for O, as they connected three Os along a
diagonal.

Q: What are all possible indexes that must be checked to determine if
a player has won?

Puzzle #1:

Complete the checkState function in Python. This function takes in one

argument, board (a List, as defined above), and should return:

 1, if X has won

 -1, if O has won

 0, if no one has won

The following are example calls to checkState and the expected return

values:
 checkState(["X","X","O","X","O","-","O","O","X"])  -1

 checkState(["-","-","-","-","-","-","-","-","-"])  0

 checkState(["X","X","X","O","O","-","-","-","-"])  1

 checkState(["X","O","X","O","O","X","X","X","O"])  0

Traversing the Game States
To ensure that we can craft an algorithm that will never lose, we need
to find all of the paths to victory and make sure to avoid all the paths
to defeat!

To do that, we need to evaluate every possible game state. If it’s
currently Os turn to go on the following board:

 X X O

 X

 O

Current board state (as shown above):
 ["X","X","O","-","X","-","O","-","-"]

Next board states (after O makes a play):
 ["X","X","O","O","X","-","O","-","-"]

 ["X","X","O","-","X","O","O","-","-"]

 ["X","X","O","-","X","-","O","O","-"]

 ["X","X","O","-","X","-","O","-","O"]

Puzzle #2:

Complete the getNextStates function in Python. This function takes in

two arguments, board (the current board, a List) and turn (the current

player to go next, either “X” or “O”).

The function should return a list of dictionaries of all the possible next board
states that can occur after the turn is made. Each element in the dictionary
should contain exactly two values:

 board, the future board state

 move, the index of the array that the move was made

In the example above, the returned data structure would be:
[
 {"board": ["X","X","O","O","X","-","O","-","-"], "move" 3},

 {"board": ["X","X","O","-","X","O","O","-","-"], "move" 5},

 {"board": ["X","X","O","-","X","-","O","O","-"], "move" 7},

 {"board": ["X","X","O","-","X","-","O","-","O"], "move" 8},

]

Finding the Winning Move
Finally, we can find the winning move! For every board state, we can
always win by programming a winning algorithm:

 If O can win, make that move.

 If X can win, avoid the move that allowed X to win.

 If the game has not finished yet, find the future board states
from the current board state.

We’ll work on this one together!

