Tuesday 7/15: Trees and Grammars

Trees

tree: an undirected graph with a special node called the *root* node, where every node is connected to the root by exactly one path

- parent: neighboring node that is closest to the root
- child: neighboring node that is furthest from the root
- siblings: two children of the same parent
- leaf: a node with no children
- internal node: a non-leaf node
- level: of a node is the path length of that node to the root
- height: of a tree is the maximum level of any of its leaves
- ancestor: y of x means x is reachable by "child" relationships from y
- descendant: x of y means y is reachable by "parent" relationships from x
- m-ary tree: each node can have between 0 and m children
- full m-ary tree: each node has either 0 or m children
- complete tree: all leaves are at the same level
- subtree: like a subgraph relationship but the subgraph must have a tree structure

counting nodes example: How many nodes are there in a full and complete binary tree of height h?

At level 0, we have 1 node, at level 1, 2 nodes, then 2^2 , 2^3 , etc. Thus, the total number of nodes is given as $\sum_{l=0}^{h} 2^l = 2^{h+1} - 1$.

Grammars

Before we get into grammars, let's review strings.

Strings

string: a finite-length sequence of characters

length: of a string is the number of characters it contains

e.g., **pineapple** is a string of length 9.

 ϵ : (epsilon, or the empty string) is used for the string containing no characters, which has length 0

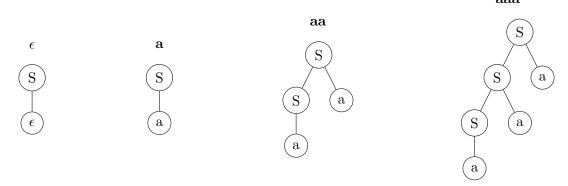
We specify concatenation of strings by writing them next to each other. For example, suppose $\alpha =$ blue and $\beta =$ cat. Then $\alpha\beta$ would be the string bluecat and β s is the string cats.

bit strings: consist of characters 0 and 1

Context-free Grammars

context free grammar: is a set of rules for structure of a tree

e.g., Let's define a grammar G with start symbol S and terminal symbol a with the following rules: $S \to Sa \mid a \mid \epsilon$. This means we are creating trees rooted at S, where the possible children for S are S and a or just a, and the leaves must all be a's.



We read the leaves left to right in order to read the *terminal sequence*. We say that sequence was *qenerated* by G. This grammar G generates strings that are 0 or more a's.

grammar example: design a context-free grammar that generates strings of the form a^nbc^n where $n \ge 0$. That is, 0 or more a's followed by a b and then the same number of c's.

Let's design a grammar G with start symbol V, and terminal symbols a, b, c.

$$S \rightarrow b \mid aSc$$

What if we wanted a^*bc^* instead? In other words, any number of 0 or more a's and c's.

Then, we have the following rules:

$$S \rightarrow b \mid aS \mid Sc$$