Friday 7/18: Algorithms pt. 1

Big-O Induction

Yesterday we looked at how we can show one function is big-O of another function, by choosing c and k values that fulfill the big-O definition. We can also use induction for a more rigorous proof. Note that you do not need to do a proof by induction unless you are asked for it.

Big-O induction example: Prove that 2^n is O(n!)

To show that 2^n is O(n!) we need to show that there are positive real numbers c and k such that $0 \le 2^n \le c \cdot n!$ for all $n \ge k$. We can select c = 1 and k = 4 (try a few values so we know this is true). We now will prove $2^n \le n!$ for all $n \ge 4$.

Proof by induction on n:

Base Case: n=4

$$2^4 = 16 < 24 = 4!$$

Inductive Hypothesis: Assume that $2^n \le n!$ for all $4 \le n < j$. Now we want to show $2^j \le j!$. We know j! = j(j-1)!

By IH, $(j-1)! \ge 2^{j-1}$ so

$$j! = j(j-1)! \ge j \cdot 2^{j-1}$$

Since $j \ge 4$ it holds that $j \ge 4 > 2$ so

$$j! = j(j-1)! \ge j \cdot 2^{j-1} > 2 \cdot 2^{j-1} > 2^j$$

Thus $2^n \le n!$ for all $n \ge 4$, so 2^n is O(n!)

Basic Data Structure Review

- array element access: O(1)
- changing array length, adding/deleting elements: O(n)
- adding/removing/reading/writing at the head of a linked list, or at a constant point in the list: O(1)
- adding/removing/reading/writing from the tail, or at a point that relies on n: O(n)

The material after this point is not on Monday's exam.

Pseudo-code analysis example: What is the big-O running time of the below code? What does it compute?

```
01 closestpair(p_1, ..., p_n): array of 2D points)
02
           best1 = p_1
03
           best2 = p_2
           bestdist = dist(p_1, p_2)
04
05
           for i = 1 to n
06
                 for j = 1 to n
                        newdist = dist(p_i, p_j)
07
                        if (i \neq j \text{ and newdist} < \text{bestdist})
08
                              best1 = p_i
09
                              best2 = p_i
10
                              bestdist = newdist
11
12
           return (best1, best2)
```

Lines 02-04 take O(1).

Lines 05-11 have 2 nested for-loops, and the 08-11 takes O(1), so in total this is $O(n^2)$. Line 12 takes O(1).

In total, the code takes $O(1 + n^2 + 1) = O(n^2 + 2) = O(n^2)$.

This code finds which 2 points are the closest to each other from the list.