Wednesday 6/25: Sets

Set Basics

A set, by definition, is an unordered collection of objects. The objects in a set (as we call *elements* or *members*) can be any type you want, such as numbers, colors, letters, or even sets.

A few things to note:

- Unordered-ness means that the order of elements in a set representation does not matter. For example, $\{1,2,3\}$ and $\{1,3,2\}$ are two names for the same set.
- Each element occurs only in a set, so $\{1,2,3\}$ and $\{1,1,2,3,3,3\}$ are also two names of the same set.
- Sets are containers, so sets containing exactly one element are not the same as the one element itself. For example, $\{1\} \neq 1$.
- We use \emptyset to denote an empty set. Please do not write $\{\}$, as that might make others think less of your mathematical skills. Note that $\{\emptyset\}$ denotes the set containing one element, which is the empty set.

You should have seen this notation $x \in A$, and it means x is a member of the set A. Three basic ways to define a set:

- Listing all its elements, e.g. $\{0, 1, 2, 3\}$. If it is hard to list out all elements, please use the following two methods to avoid ambiguity, unless the pattern is VERY clear to your readers.
- Plain, mathematical English, e.g. "all integers greater than or equal to zero".
- Set builder notation, e.g. $\{x \in \mathbb{Z} | x > 0\}$.

The set builder consists of two parts separated by | or :. On the left we have two things: name (in this case x) and a range (\mathbb{Z}). On the right, we have more constraints that x must satisfy. Here is how to transform between verbal description and set builder notation, with corresponding parts using the same color.

The set of all integer x such that x is greater than or equal to $0 \equiv \{x \in \mathbb{Z} | x \ge 0\}$

Cardinality of Sets

The cardinality of a (finite) set is defined by the number of *unique* elements in the set. An empty set by definition has cardinality of 0. Notation: |A| means the cardinality of set A. We will talk about cardinality of infinite sets later in this course. Spoiler alert: there are different types of infinity!

A few examples:

- $|\emptyset| = 0$
- $|\{0\}| = 1$
- $|\{1,2\}|=2$
- $|\{1,2,2,1\}|=2$

Subsets

Given two sets A and B, A is a subset of B (written as $A \subseteq B$) if and only if every element in A is also in B. In other words, $\forall x, x \in A \implies x \in B$.

The bar at the bottom of \subseteq suggests these two sets could be equal (similar to \le). If you want to force two sets to be strictly different, meaning every element in A is also in B, but there is at least one element in B that is not in A, then you can say A is a *proper* subset of B, or $A \subseteq B$.

To prove $A \subseteq B$, use the following structure:

- pick arbitrary element $x \in A$
- show that $x \in B$

Note that $\emptyset \subseteq A$ for every set A. This statement can be translated into the following:

$$\forall x, x \in \emptyset \implies x \in A$$

Because the if condition is always false (we indeed cannot pick any element from an empty set), the whole statement is *vacuously true*. As a result, we claim that the empty set is a subset for every set, and it is a proper subset for every set other than empty set itself.

Note the difference between \emptyset and $\{\emptyset\}$. \emptyset is the empty set and has cardinality of 0. $\{\emptyset\}$ is a set containing one element, which is the empty set, and has cardinality of 1. $\emptyset \in \{\emptyset\}$.

Set Equality

To prove that two sets A and B are equal, you need to show the following:

- $A \subseteq B$
- and $B \subseteq A$

Set Operations

- Intersection (\cap): $A \cap B = \{x | x \in A \text{ and } x \in B\}$
- Union (\cup): $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Difference (-): $A B = \{x | x \in A \text{ and } x \notin B\}$
- Cross Product (\times): $A \times B = \{(x,y) | x \in A \text{ and } y \in B\}$

For example, if we have $A = \{0, 1, 2\}, B = \{1, 3\}, \text{ then }$

- $A \cap B = \{1\}$
- $A \cup B = \{0, 1, 2, 3\}$
- $A B = \{0, 2\}$
- $A \times B = \{(0,1), (0,3), (1,1), (1,3), (2,1), (2,3)\}$