Wednesday

Proof by contrapositive

Contrapositive: The rephrasing of an implication that is equivalent to the original claim.

e.g., the contrapositive of "if p then q" is "if not p then not q" with quantifier: $\forall x, P(x) \to Q(x) \equiv \forall x, \neg Q(x) \to \neg P(x)$

importantly, the contrapositive is **not** a negation

and, we *only* do proof by contradiction on implications.

Easy contrapositive example: Use proof by contrapositive to prove the following claim: for any integers a, b if $a + b \ge 15$, then $a \ge 8$ or $b \ge 8$.

First, we state the contrapositive: for any integers a, b if a < 8 and b < 8 then a + b < 15. Let a and b be integers where a < 8 and a < 8. Since a and b are integers, $a \le 7$ and $b \le 7$. Then, $a + b \le 14 < 15$. So a + b < 15.

Harder contrapositive example: Use proof by contrapositive to prove the following claim: for any integer n, if n^2 is even then n is even.

Contrapositive: For any integer n, if n is odd then n^2 is odd.

Let $n \in \mathbb{Z}$ and let n be odd.

By the definition of odd integers, n = 2k + 1 for some $k \in \mathbb{Z}$.

Then, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.

Since $k \in \mathbb{Z}$, it is also the case that $2k^2 + 2k \in \mathbb{Z}$. So, by the definition of odd, n^2 is also odd.

You might be wondering why we ever do a proof by contrapositive. Usually it's because the direct proof is difficult; try proving this claim by direct proof for a challenge!