Monday

Math Review

Important sets:

- \mathbb{N} : natural numbers, $\{0, 1, 2...\}$
- \mathbb{Z} : integers, $\{0, -1, 1, -2, 2...\}$
- \mathbb{Z}^+ : positive integers, $\{1, 2, 3...\}$
- \mathbb{R} : real numbers, $\{-2, 2.5, \pi...\}$
- Q: rational numbers, numbers of the form $\frac{m}{n}$ where m and n are integers
- \mathbb{C} : complex numbers, $\{i, 2i+1, \pi\}$

Important notation:

- $x \in R$ means x is an element of the reals
- $y \in (0,5]$ for $y \in \mathbb{Z}$ means $y \in \{1,2,3,4,5\}$
- $(a,b) \in \mathbb{Z}^2$ means (a,b) is an ordered pair of integers, i.e., $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$, **NOT** squared integers

Exponents:

- $b^0 = 1$, $b^{0.5} = \sqrt{b}$, $b^{-1} = \frac{1}{b}$
- exponent rules: $b^x b^y = b^{x+y}$, $b^x a^x = (ba)^x$, $(b^x)^y = b^{xy}$

Because $y = b^x$ is equivalent to $x = \log_b y$ if b > 1 and y > 0, we also have the following logarithm rules:

- $b^{\log_b(x)}$
- $\log_b(xy) = \log_b(x) + \log_b(y)$
- $\log_b(x^y) = y \log_b(x)$
- change of base formula: $\log_b(x) = \log_a(x) \log_b(a)$

Logarithm example: Simplify the following expression:

$$\log_2(13) \cdot \log_{13}(2048)$$

Recall the change of base formula: $\log_b a = \frac{\log_x(a)}{\log_x(b)}$.

Then, we can rewrite it as $\log_x b \cdot \log_b a = \log_x(a)$. We can now directly apply this formula, where x = 2, b = 13, and a = 2048.

$$\log_2(13) \cdot \log_{13}(2048) = \log_2(2048) = \log_2(2^{11}) = 11$$

Make sure you are also familiar with the other math review topics in the textbook: factorial, max, floor, ceiling, etc.

2

Logic

Propositional Logic

Proposition: a statement which is either true or false (not both, and not neither) e.g., 5 is odd; I am in Europe right now

Complex proposition: a statement which combines one or more propositions with logical operators operators: \land (and), \lor (or), \Longrightarrow (implies), \Longleftrightarrow (bi-directional implies), \neg (not)

e.g., Naina is from Pennsylvania and Hongxuan is from Pennsylvania; the first proposition is true, and the second is false, so the entire statement is false

Truth tables: define under which conditions complex propositional statements are true and false.

Negation (\neg)

 $\begin{array}{c|c}
p & \neg p \\
\hline
T & F \\
F & T
\end{array}$

Conjunction (\land)

p	q	$p \wedge q$
T	T	T
$\mid T \mid$	F	F
F	T	F
F	F	F

Disjunction (\vee)

p	q	$p \lor q$
T	T	T
$\mid T \mid$	F	T
F	T	T
F	F	F

Implication (\Longrightarrow)

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Biconditional (\iff)

p	q	$p \leftrightarrow q$		
T	T	T		
T	F	F		
F	T	F		
F	F	T		

Logical equivalence: two statements are logically equivalent if they evaluate to true and false under the same conditions.

e.g., Demorgan's Law: $\neg(p \land q) \equiv \neg p \lor \neg q$ (try the truth table out on your own time)

Vacuous Truth Examples: Describe under which conditions each of the following statements are true and false.

(a) If it is raining when I wake up, then I will bring an umbrella to campus.

This statement tells me that rain existing when I wake up will implore me to be an umbrella to campus, otherwise the statement is false—if you catch me on campus without an umbrella on a rainy morning, I was lying.

However, I have not made any claims about what will happen if it is not raining when I wake up. I might bring an umbrella, and I might not. Either way, I wasn't lying to you when I made that statement.

This is a bit of a convention mathematically. In English you might assume that I'm also saying if it doesn't rain I won't bring an umbrella. That is perfectly reasonable but our mathematical convention is to not assume that.

(b) $\forall x \in \mathbb{Z}$, if $x^2 < 0$ then x is even.

 $x^2 < 0$ will never be true for an integer x. Thus, the *hypothesis* of the *conditional* will never be executed, and we do not care what comes after.

Rules for Negation

- Negation of negation (double negation): $\neg(\neg p) \equiv p$
- Negation of conjunction (De Morgan's Law): $\neg(p \land q) \equiv \neg p \lor \neg q$
- Negation of disjunction (De Morgan's Law): $\neg(p \lor q) \equiv \neg p \land \neg q$
- Negation of implication: $\neg(p \to q) \equiv p \land \neg q$

Negation example: Simplify the following expression so that all 'not's are on individual predicates:

$$\neg((p \land q) \to r)$$

The negated claim: $\neg((p \land q) \to r) \equiv (p \land q) \land \neg r \equiv p \land q \land \neg r$