
Discussion Problem Solutions for Examlet E

CS 173: Discrete Structures

Wednesday

Problem 13.1. in Discussion Manual

(a) Assume n is a power of 3 so that the input will always be an integer. Then we get the
following recursion tree:

The tree is described by the following table:

level “problem size” # nodes work per node total for level

0 n 1 13n 13n
1 n

3 3 13n
3 13n

2 n
3 32 13 n

32
13n

3 n
32

33 13 n
33

13n
...
k n

3k
3k 13 n

3k
13n

...

h n
3h

= 1 3h T (1) = 47 47 ∗ 3h

1

(Notice that the final row (the leaf level) follows the same pattern for problem size and number
of nodes as the rows above it, but that we also know the problem size must be 1 since that’s
the function’s base case - this is why I’ve written both n

3h
and 1 in that cell, and this is how

we are able to solve for h. Note that the work per node and hence total for level does not
follow the pattern of the levels above it; this is why our later summation only sums through
h− 1 and then we have to add in the work in the leaves separately.)

We have n
3h

= 1, i.e. h = log3 n, so there are 3log3 n = n leaves. Thus the total work at the
leaves is n · T (1) = 47n.

From the table, the total work for all non-leaf levels is∑(log3 n)−1
k=0 13n = 13n log3 n.

Putting it all together, our final closed form is 47n+ 13n log3 n.

(b) We’ll just describe the tree with a table instead of drawing it:

level “problem size” # nodes work per node total for level

0 n 1 3 3
1 n− 1 2 3 6
2 n− 2 4 3 12
3 n− 3 8 3 24
...
k n− k 2k 3 3 · 2k
...

h n− h = 1 2h T(1) = 1 1 · 2h

From n−h = 1 we get h = n− 1, so there are 2h = 2n−1 leaves, for a total work in the leaves
of 2n−1 · T (1) = 2n−1.

The total work for all non-leaf levels is∑n−2
k=0(3 · 2k) = 3

∑n−2
k=0 2

k = 3(2n−1 − 1).

Thus our closed form is 2n−1 + 3(2n−1 − 1) = 4 · 2n−1 − 3 = 2n+1 − 3.

2

Thursday

Problem 13.3. in Discussion Manual

(b) Let T be a parity tree; we will prove T has the parity property by induction on its height h.

Base: For height 0, T is just a solitary root. That root is also a leaf so it is orange by rule 1
of parity trees. Thus there is an odd number of leaves (1) and the root is orange, so T has
the parity property.

(Commentary: You might think you need two base cases here: height 0 for an orange-root
case and height 1 for blue-root. However, while including an extra base case doesn’t invalidate
the proof, it’s not actually necessary here - to see that, try following through the logic of the
induction step below using the concrete height 1 tree plugged in for T everywhere.)

Induction: Suppose that all parity trees with height less than h have the parity property.
Then for parity tree T with height h, consider its left and right subtrees Tℓ and Tr, and let
nl and nr be the number of leaves in the respective subtrees. Notice that Tℓ and Tr are also
parity trees, so since they have height smaller than h, by the IH we know they both have
the parity property. (You can not say that they have height h − 1 - one of them definitely
does, but the other could be arbitrarily shorter. This is why it is important that we are using
a strong IH.) Now we get four cases:

Case 1: nℓ and nr are both even. Then by the parity property, Tℓ and Tr both have blue
roots. Then by rule 2 of parity trees, T also has a blue root. And we know the total number
of leaves is nℓ + nr which is even (because its the sum of two evens), so T has the parity
property.

Case 2: nℓ and nr are both odd. Then by the parity property, Tℓ and Tr both have orange
roots. Then by rule 2 of parity trees, T has a blue root. And we know the total number of
leaves is nℓ+nr which is even (because its the sum of two odds), so T has the parity property.

Case 3: nℓ is even and nr is odd. Then by the parity property, Tℓ has a blue root and Tr has
an orange root. Then by rule 2 of parity trees, T has an orange root. And we know the total
number of leaves is nℓ + nr which is odd (because its the sum of an even and an odd), so T
has the parity property.

Case 4: nℓ is odd and nr is even. See case 3 with the roles of Tℓ and Tr reversed.

Thus T has the parity property in every case.

Problem 13.2. in Discussion Manual

(a) Proof by induction on the tree height.

Base: Notice that trees from this grammar always have height at least 1. The only ways to
produce a tree of height 1 are the third and fourth rules; in each case the tree ends up with
one node labeled a and at most one labeled b.

Induction: Assume that any tree of height less than some k > 1 has at least as many a nodes
as bs. Now consider a generated tree with height k. The root must be labelled S and the
grammar rules that can produce trees of height greater than 1 give us two cases for what the
children are:

Case 1: The root’s children are labeled a, S, b, and S. Let T1 and T2 be the subtrees
rooted at the nodes labeled S, and let a1, a2, b1, b2 be how many a nodes and b nodes are in

3

each subtree. Since T1 and T2 have height less than k, the IH applies to them, so a1 ≥ b1
and a2 ≥ b2. Putting these two inequalities together and adding one, we establish that
a1+a2+1 ≥ b1+ b2+1. And a1+a2+1 is just the total number of a nodes in the tree while
b1 + b2 + 1 is the total number of b nodes, so we have shown that there are at least as many
as overall as bs.

Case 2: The root’s children are labeled S, a, S. The logic here is exactly like case 1 except
with one fewer b node, so there are definitely at least as many as as bs.

Thus in every case there are at least as many as as bs.

4

Friday

Problem 1. from Big-O Tutorial Problems

(a) We want to show there are positive reals k, c such that ∀n ≥ k, 0 ≤ 2n ≤ c ·n!. Let k = 4 and
c = 1. Then it remains to show that ∀n ≥ 4, 0 ≤ 2n ≤ n!. This follows from Claim 50 in the
textbook.

(Commentary: Note that k = 4 is not the tightest bound on n. You can attempt to compute
the tightest bound by “solving” the inequality 2n ≤ n!. If it’s not clear to you how to do this;
try taking the log2 of both sides and applying log rules. You should end up with a claim that
matches n ≥ k.)

(b) This statement is false. As a counterexample, consider f(n) = 2n and g(n) = 1. Then f(n) is
O(2n) and g(n) is O(n!), but f(n) is not O(g(n)). (Commentary: Informally, “g(n) is O(n!)”
provides an upper bound on how fast g can grow, but it does not provide a lower bound.)

Problem 2. from Big-O Tutorial Problems

Fix f, g, h, and assume that f(n) is O(g(n)) and g(n) is O(h(n)). Then by definition of big-O,
there are (positive real) k0, c0 such that ∀n ≥ k0, 0 ≤ f(n) ≤ c0g(n), and also k1, c1 such that ∀n ≥
k1, 0 ≤ g(n) ≤ c1h(n). Now we want to show there are k, c such that ∀n ≥ k, 0 ≤ f(n) ≤ ch(n).

Let k = max(k0, k1) and c = c0c1. Then we need to show ∀n ≥ max(k0, k1), 0 ≤ f(n) ≤
(c0c1) ·h(n). To do this, fix n ≥ max(k0, k1). Then we have 0 ≤ f(n) (since n ≥ max(k0, k1) ≥ k0),
and also:

f(n) ≤ c0g(n) (since n ≥ max(k0, k1) ≥ k0)

≤ c0(c1h(n)) (since n ≥ max(k0, k1) ≥ k1)

= (c0c1) · h(n) (rearrange)

Thus, f(n) is also O(h(n)).

Problem 14.2. in Discussion Manual

(b) For this problem let’s fix c = 1 and find the tightest bound on n (i.e., k). When c = 1, we

have x3+2x
2x+1 ≤ x2. This simplifies to x3 + 2x ≤ 2x3 + x2. We can divide both sides by x and

move the terms to the same side and get x2+x−2 ≥ 0. Factoring, we have (x+2)(x−1) ≥ 0.
This gets us x ≥ −2 and x ≥ 1 or x ≤ −2 and x ≤ 1. The only feasible option here is that
x ≥ 1. Thus, c = 1 and k = 1.

(Commentary: To show more concretely that these values work; try setting x ≥ k (in this

case k = 1), and working to get x3+2x
2x+1 ≤ x2.)

(d) In this case we will choose c and k upfront and show that the big-O inequality must hold.
Let’s set c = 1 and k = 3.

Now, we have x ≥ k, or x ≥ 3, and we want to show that in this case, 2x + 17 ≤ 3x. Let’s
rephrase the claim to be 2x ≤ 3x − 17. We will show this using induction on x.

Base case: x = 3, 23 ≤ 33 − 17. 8 ≤ 10; the base case holds.

5

IH: Suppose 2x ≤ 3x − 17 for x = 3..k − 1. Then our goal is to show that 2k ≤ 3k − 17.

Let’s start with 2k. This can be written as 2 ∗ 2k−1. We know that 2k−1 ≤ 3k−1 − 17
by the IH. Then, 2k ≤ 2 ∗ (3k−1 + 17) = 2 ∗ 3k−1 − 34. Using algebra, we can show that
2k ≤ 2 ∗ 3k−1 − 34 < 3 ∗ 3k−1 − 34 = 3k − 34 < 3k − 17. Thus, we have shown 2k ≤ 3k − 17.

6

Monday

Problem 15.3. in Discussion Manual

(a) crunch computes how many nonnegative numbers are in the array.

(b) T (1) = d
T (n) = 2T (n2) + c

(c) Answer: Θ(n).

Justification using unrolling:

• T (n) = 2T (n2) + c

• T (n) = 2[2T (n
22
) + c] + c = 22T (n

22
) + 2c+ c

• T (n) = 22[2T (n
23
) + c] + 2c+ c = 23T (n

23
) + 22c+ 2c+ c

Based on the above, we predict the general form is that for any k,

T (n) = 2kT (
n

2k
) +

k−1∑
i=0

2ic = 2kT (
n

2k
) + c(2k − 1)

.

When we choose k such that 2k = n, this becomes nT (1) + c(n− 1) = dn+ cn− c, which is
Θ(n).

Problem 15.4. in Discussion Manual

(a) FindPeak(-1,3,6,7,0):

- skip several false ifs

- set k=3

- skip line 8’s if

- line 10: since 6<7, we return FindPeak(7,0)+3

FindPeak(7,0):

- line 3: since 7>0, we return 1

Thus the original call returns 1+3=4

And the peak is indeed at position 4 (starting from that 7, the array strictly decreases in
both directions until its ends)

(b) 3. If n were 1, we would have returned on line 1. If n were 2, we would return on either line 4
or line 6 (because the first item is either greater than or less than the second/last). However
on an input array with 3 elements whose peak is in the center, like [5, 6, 4], we can reach line
7. (Note that to argue that 3 is the smallest, we had to argue both that 3 works and that no
smaller number works.)

(c) T (1) = T (2) = c
T (n) = T (n/2) + d

7

(d) Θ(log(n)). We find this by unrolling: T (n) = T (n/2) + d = T (n/22) + 2d = T (n/23) + 3d =
· · · = T (n/2k) + kd = T (n/2log(n)) + log(n)d = c+ log(n)d

Problem 15.5. in Discussion Manual

(a) Foo(n) computes the nth Fibonacci number.

1. O(n). We have a for-loop which does a constant amount of work O(n) times; everything else
in the program just adds an additional constant amount of work.

(b) RecursiveFoo(n: non-negative integer)

if n=0 or n=1

return n

else

return RecursiveFoo(n-1) + RecursiveFoo(n-2)

This algorithm just follows the (recursive) definition of Fibonacci exactly - to compute the
nth Fibonacci number, it just computes and then adds together the (n− 1)th and (n− 2)th.

(c) We’ve established Foo runs in linear time; meanwhile RecursiveFoo is exponential time with
respect to n. We can write a recurrence for RecursiveFoo’s runtime: T (0) = T (1) = c,
T (n) = T (n − 1) + T (n − 2) + d. Computing the closed form for that recurrence is outside
the scope of this class, but it’s definitely exponential - one way to see that is to first bound
it below by a similar recurrence where T (n) = 2T (n− 2) + d instead.

8

