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Thursday

Problem 1. Constructing a concrete relation

R is the relation which relates a to b for each row in this table:

a b

1 2
2 1
1 1
2 2

The above solution is actually the only relation that satisfies the given conditions. To construct
it, we can apply the conditions one at a time as follows: First, we know that 1R2. Then to make R
symmetric, we have to also include 2R1. Then to make R transitive, we have to include 1R1 and
2R2. (Remember that the definition of transitive does not require that x, y, z be distinct.) Finally
we check over all the conditions again to confirm we are done.

You did not have to demonstrate that this is the only possible R, but notice that if you include
3R3 then the relation would be reflexive and thus an equivalence relation, and if you make any
other additional pair of elements related, then either you will not add enough to restore symmetry
and transitivity, or you will discover that everything has to be related to everything else, which is
again an equivalence relation.)

Problem 4.3. in Discussion Manual

(a) By the definition of ∼, [(1, 3)] contains every (c, d) pair where 1 + d = 3 + c, i.e., where
d − c = 2. (For example, it contains (0, 2) and (1001, 1003).) Similarly, we see that [(0, 4)]
contains all pairs where d− c = 4, and [(2, 4)] contains all pairs where d− c = 2 (i.e., it is the
same as our earlier [(1, 3)]). More generally, for each integer k there is one equivalence class
[(0, k)] = {(c, d) | d− c = k, c ∈ Z, d ∈ Z} = {(c, c+ k) | c ∈ Z} .

We will now show that ∼ is an equivalence relation by showing it is reflexive, symmetric, and
transitive:

• Claim: ∼ is reflexive. Consider integers x and y. x+ y = y + x, so (x, y) ∼ (x, y).

• Claim: ∼ is symmetric. Consider integers w, x, y, z such that (w, x) ̸= (y, z) and (w, x) ∼
(y, z). Then by definition of ∼, w + z = x+ y. This can be rewritten as y + x = z + w,
so (y, z) ∼ (w, x).

• Claim: ∼ is transitive. Consider integers u, v, w, x, y, z such that (u, v) ∼ (w, x) and
(w, x) ∼ (y, z). Then by definition of ∼, u+x = v+w and w+z = x+y. Then, from the
first equation, x = v+w−u. Plugging this into the second, we have w+z = v+w−u+y.
This simplifies to u+ z = v + y. Thus, (u, v) ∼ (y, z).
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(b) By the definition of ∼, [2] contains every integer y where 4 | (3 ·2+5y). Since 6+5y and y−2
differ by a multiple of 4 (i.e. 4(y + 2)), we see that 4 | (6 + 5y) iff 4 | (y − 2), so [2] contains
all integers that are 2 more than a multiple of 4, i.e. [2] is precisely [2]4 (the congruence class
of 2 mod 4).

Similarly, [3] contains every integer y where 4 | (3 · 3+ 5y). Since 9+ 5y and y− 3 differ by a
multiple of 4 (i.e. 4(y − 3)), we see that 4 | (9 + 5y) iff 4 | (y − 3), so [3] contains all integers
that are 3 more than a multiple of 4, i.e. [3] is just [3]4.

By continuing the same logic, we see that there are only 4 equivalence classes and these are
the congruence classes of 0, 1, 2, and 3 mod 4. In fact ∼ is just equivalence mod 4, i.e. x ∼ y
if and only if x ≡ y (mod 4).

We will now show ∼ is an equivalence relation by showing it is reflexive, symmetric, and
transitive:

• Claim: ∼ is reflexive. Consider an integer x. 3x+ 5x = 8x = 4(2x), so 4 | 3x+ 5x and
thus x ∼ x.

• Claim: ∼ is symmetric. Consider integers x, y such that x ̸= y and x ∼ y. Then by
definition of ∼, 4 | 3x + 5y, i.e. 3x + 5y = 4k for some integer k. Then 5x + 3y =
8x+ 8y − (3x+ 5y) = 8x+ 8y − 4k = 4(2x+ 2y − k). Thus 3y + 5x is a multiple of 4,
so y ∼ x.

• Claim: ∼ is transitive. Consider integers x, y, z such that x ∼ y and y ∼ z. Then by
definition of ∼, 4 | 3x + 5y, and 4 | 3y + 5z. i.e. 3x + 5y = 4k and 3y + 5z = 4m
for some integers k,m. Adding the equations gives us 3x + 8y + 5z = 4k + 4m, so
3x+ 5z = 4(k +m− 2y) and thus x ∼ z.
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Friday

Problem 5.1. in Discussion Manual

(b) This is true: 0 is a value for x such that, for every possible value of y, xy = x. (The domain
is very important here - if instead it were e.g. positive integers, then the statement would be
false.)

(c) This is true: every real number x has a decimal expansion. If we truncate this expansion to
two decimal places, we will have a rational number y. Then, x and y will differ by at most
0.009999..., which is less than or equal to 0.01.

Problem 5.2. in Discussion Manual

(a) This translates to “for every element in the co-domain, there is an element of the domain
which maps to it”, which is just the definition of onto.

(b) This translates to “every element in the domain maps to (at least) one element of the co-
domain”. This statement is true of all functions, so it doesn’t represent any interesting named
concept.

(c) This translates to “there is an element of the co-domain which is mapped to from every
element of the domain”. In other words, this represents the concept of a function being
constant - e.g. this statement is true of the function f : Z → Z defined by f(x) = 42.

(d) This translates to “there is an element of the domain which maps to every element of the
co-domain”. Since every input to a function must map to exactly one output, the statement
is true if and only if the co-domain has exactly one element.

Problem 5.3. in Discussion Manual

(b) Let f be a function from Z2 to Z, and let z be an arbitrary element in Z (the co-domain of
f). We need to find a pre-image for z in Z2. Let’s call that pre-image (a, b), and suppose
a = 1 and b = z − 27. We know 1 is an integer, and z − 27 is also an integer since z and 27
are both integers. So, (a, b) ∈ Z2. Then, f(a, b) = f(1, 27− z) = 1 ∗ (z − 27) + 27 = z. Thus,
we have found a pre-image to z, and f must be onto.
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Monday

Problem 7.1. in Discussion Manual

(b) Let h be the given function and let x and y be elements of N. Let’s suppose h(x) = h(y).
Then, by the definition of h, x2 + 27 = y2 + 27. Simplifying, we get x2 = y2. Since x and y
are both natural numbers, it then must be the case that x = y. Thus, we have proven that
h is one-to-one.

Problem 7.3. in Discussion Manual

(a) Suppose that f ◦ g is onto and f is one-to-one. Let y be an element of B, and consider
z = f(y). Since f ◦ g is onto, there is an element k ∈ A such that (f ◦ g)(k) = z, i.e.
f(g(k)) = z. Since f is one-to-one and f(g(k)) = z = f(y), it follows that g(k) = y. Thus we
have found an element of A which maps to y, so g is onto.

(b) Let A = {a}, B = {b, z}, C = {c}. Let f and g be the constant functions f(x) = c and
g(x) = b. Then f ◦ g is onto (because f(g(a)) = c), but g is not onto (because there is no
input which gives the output z).
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