Problem 1

Prove the following claim by direct proof:

For any integers k and m, if $k \le 7$ and $0 < m - 3 \le \frac{k}{7}$, then $m^2 - 9 \le k$.

Problem 2

Express the following set *S* as a finite set of elements:

 $S = \{ (a, b) \in \mathbb{N} \times \mathbb{Z} \mid 0 \le a \le 2 \text{ and } |a + b| \le 1 \}$

Problem 3

Define a relation R on \mathbb{Z}^2 by (a, b)R(c, d) iff either a < c or a = c and $b \leq d$. Prove that R is transitive.

Problem 4

Suppose that $h : \mathbb{Z} \to \mathbb{Z}$ is known to be onto. Define $f : \mathbb{Z}^2 \to \mathbb{Z}$ by f(x, y) = h(x) + h(y). Prove that f is onto.

Problem 5

Let *V* be a particular set of vertices of cardinality *n*. How many different (simple, undirected) graphs are there with these *n* vertices? Here we will assume that we are naming the edges of the graph using a pair of vertices (so you cannot get new graphs by simply renaming edges). Briefly justify your answer.

Problem 6

Find the closed form of the following recurrence by drawing the recursion tree.

$$T(1) = 5$$
, and $T(n) = 3T(n/2) + 7$ for $n \ge 2$

Problem 7

Suppose *f* and *g* are increasing functions from reals to the reals, for which all output values are > 1. If f(x) is O(g(x)), then is $\log(f(x)) O(\log(g(x)))$?

Problem 8

How many positive integer solutions are there to a + b + c = 11?