Problem 1

The Fibonacci trees *Tⁿ* are a special sort of binary tree defined recursively as follows.

1. T_1 and T_2 are binary trees with only a single vertex.

2. For any $n \geq 3$, T_n consists of a root node with T_{n-1} as its left subtree and T_{n-2} as its right subtree.

Use induction to prove that the height of T_n is $n-2$, for any $n \ge 2$.

Here is some scaffolding to help you get started.

Solution: We prove by induction. Our induction variable is _______ and it represents the ____________ of/in the tree. *We are proving a property of certain types of trees, so use a property of trees as your induction variable.*

Base Case(s): *How many do you need? Remember, the number depends on your inductive step. So don't feel afraid to come back and revise this.*

Induction Hypothesis: *Be specific, don't just refer to "the claim." Similar to the base cases, part of this depends on your inductive step. So come back to this as needed and rewrite.*

Inductive Step: *Make sure it's clear where you use the inductive hypothesis!*

Problem 2

Here is a grammar *G* with start symbol *S* and terminal symbols *a* and *b*:

$$
S \to \varepsilon \mid a \ S \ b \ S \mid b \ S \ a \ S
$$

For a string *s*, let *A*(*s*) denote the number of *a*'s in *s* and similarly let *B*(*s*) denote the number of *b*'s in *s*. Use induction to prove that any string *s* with *A*(*s*) = *B*(*s*), that is any string with an equal number of *a*'s and *b*'s, can be generated by *G*. You may use the following fact (and the equivalent fact swapping *a*'s and *b*'s) without proof:

Fact: Suppose the number of *a*'s in a string *s* is one more than the number of *b*'s in *s*. Then we can divide *s* into a string *s* = *x a y* where *x* and *y* are strings such that *x*, and therefore also *y*, both have an equal number of *a*'s and *b*'s.

The same scaffolding as above will also help you get started!

Problem 3

According to the ≪ ordering, order the following functions:

 $(2n)!$, 2^n , $5n$, 3^n , $12log(n)$, n^3 , $nlog(n)$, $n^2log(n)$, n^2

Problem 4

Given the following recurrence, fill in the following key facts. Assume that *n* is a power of 4.

$$
T(1) = 7
$$

$$
T(n) = 2T\left(\frac{n}{4}\right) + n
$$

1. The height:

2. The number of leaves:

3. Total work (sum of the nodes) at level *k*:

Problem 5

Prof. Flitwick claims that for any functions f and g from the reals to the reals whose output values are always >1 , if *f* (*x*) ≪ *g*(*x*) then log(*f*(*x*)) ≪ log(*g*(*x*)). Is this true? Briefly justify your answer.

Problem 6

Find the big-*Θ* run time of the following recurrence:

$$
T(1) = c
$$

$$
T(n) = 2T\left(\frac{n}{4}\right) + dn^2
$$

Problem 7

Consider the following algorithm. Suppose that removing the *k*-th element of a list takes *O*(*k*) time.

- **(i)** Give an English description of what Churn computes. *Stuck? Try on a short input of a few integers.*
- **(ii)** Let $T(n)$ denote the runtime of CHURN on a list of size *n*. Give a recursive definition of $T(n)$.

Stuck? First find the big-Θ run time of each line. Identify which portions are the recursive and non-recursive work and combine that into a recurrence.

- **(iii)** Draw the first 2-3 levels of a recursion tree of $T(n)$.
- **(iv)** How many leaves are there in the recursion tree for $T(n)$? What is the total work of the leaf nodes?