Problem 1

Simplify these expressions:

(a)

$$\frac{\log_3(81^k)}{7k}$$

(b)

$$\log_2(13) \cdot \log_{13}(2048)$$

Problem 2

For the following statement, please state the contrapositive **and** the negation. Move all instances of "not" to individual predicates.

$$\forall x \in \mathbb{R}, f(x) > g(x) \Longrightarrow f(x+1) < g(x+1)$$

Problem 3

Use direct proof to prove the following claim.

For all
$$x, y \in \mathbb{R}$$
 where $x \neq 0$, if x and $\frac{y+1}{3}$ are rational, then $\frac{1}{x} + y$ is rational.

Problem 4

Prove the following claim by contrapositive.

For all $a, b, c \in \mathbb{Z}$ with a and c both non-zero, if $ac \mid bc$ then $a \mid b$.

Problem 5

Recall that $[n]_k$ is the set of all integers congruent to *n* modulo *k*. These are the number *x* such that k | n - x. Now, simplify the following expression:

$$\left[34^8 + 1600 * 9^{15}\right]_{16}$$

Problem 6

Let $A = \{1, 2, 3\}$ and $B = \{\{1, 2\}, 3\}$. Compute or simplify the following expressions.

(a)

$$(A-\emptyset)\cap B\cap\mathbb{Z}$$

(b)

 $\emptyset \times B$

(c)

 $|\emptyset \cup A \cup B|$

Problem 7

Let $A = \{ (a, b) \in \mathbb{R}^2 \mid a = 3 - b^2 \}$ and $B = \{ (x, y) \in \mathbb{R}^2 \mid |x| \ge 1 \text{ or } |y| \ge 1 \}$. Prove that $A \subseteq B$.

Hint: consider proof by cases on the value of b.

Problem 8

Prove that the following identity is true or give a concrete counterexample.

For any sets *A*, *B* and *C*, if $A \times C \subseteq B \times C$, then $A \subseteq B$