Collections of Sets Part b: Partitions

lan Ludden

lan Ludden Collections of Sets Part b

▲ 同 ▶ ▲ 国 ▶

• Define a partition of a set *A* informally and formally.

• Image: A image:

- Define a partition of a set *A* informally and formally.
- Determine whether a specific set *P* is a partition of some specific set *A*.

伺下 イヨト イヨト

- Define a partition of a set *A* informally and formally.
- Determine whether a specific set *P* is a partition of some specific set *A*.
- Connect the equivalence classes of an equivalence relation on *A* to parts of a partition of *A*.

What is a partition?

lan Ludden Collections of Sets Part b

Ξ

<ロト < 団ト < 団ト < 団ト

What is a partition?

• Split a set into parts

E

* 同 ト * ヨ ト * ヨ

• Split a set into parts

Definition

A **partition** of a set A is a set \mathcal{P} of subsets of A such that:

What is a partition?

• Split a set into parts

Definition

A **partition** of a set *A* is a set \mathcal{P} of subsets of *A* such that: (1) $\bigcup_{S \in \mathcal{P}} S = A$ (the sets cover all of *A*) • Split a set into parts

Definition

A **partition** of a set A is a set \mathcal{P} of subsets of A such that:

(1) $\bigcup_{S \in \mathcal{P}} S = A$ (the sets cover all of *A*)

(2) $S \neq \emptyset \ \forall S \in \mathcal{P}$ (the sets are non-empty)

• Split a set into parts

Definition

A **partition** of a set A is a set \mathcal{P} of subsets of A such that:

- (1) $\bigcup_{S \in \mathcal{P}} S = A$ (the sets cover all of *A*)
- (2) $S \neq \emptyset \ \forall S \in \mathcal{P}$ (the sets are non-empty)
- (3) $S \cap U = \emptyset \ \forall S, U \in \mathcal{P}, S \neq U$ (the sets are pairwise disjoint)

Examples of Partitions

Partition rules: (1) covers set, (2) non-empty, (3) pairwise disjoint

< 回 ト < ヨ ト < ヨ ト

Examples of Partitions

Partition rules: (1) covers set, (2) non-empty, (3) pairwise disjoint

• Color classes of a graph with a proper k-coloring

• Imp • • m = • • m = • •

Examples of Partitions

Partition rules: (1) covers set, (2) non-empty, (3) pairwise disjoint

- Color classes of a graph with a proper k-coloring
- Splitting students into *k* project teams

* 伊 ト * ヨ ト * ヨ ト -

lan Ludden Collections of Sets Part b

Ξ

・ロト ・ 四ト ・ ヨト ・ ヨト ・

• Let $A = \{ \odot, 2, \pi, \odot \}$. Is $\mathcal{P} = \{ \{2\}, \{\pi\}, \{\odot, \odot\} \}$ a partition of *A*?

lan Ludden Collections of Sets Part b

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 - �� < ♡ > ()

- Let $A = \{ \odot, 2, \pi, \odot \}$. Is $\mathcal{P} = \{ \{2\}, \{\pi\}, \{\odot, \odot\} \}$ a partition of *A*?
- Let $A = \{ \odot, 2, \pi, \odot \}$. Is $\mathcal{P} = \{ \{2, \pi\}, \emptyset, \{ \odot, \odot, \pi \} \}$ a partition of A?

* 伊 ト * ヨ ト * ヨ ト - ヨ -

- Let $A = \{ \odot, 2, \pi, \odot \}$. Is $\mathcal{P} = \{ \{2\}, \{\pi\}, \{\odot, \odot\} \}$ a partition of A?
- Let $A = \{ \odot, 2, \pi, \odot \}$. Is $\mathcal{P} = \{ \{2, \pi\}, \emptyset, \{ \odot, \odot, \pi \} \}$ a partition of A?

• Define
$$Q_1 = \{(a, b) \in \mathbb{R}^2 : a \ge 0 \text{ and } b \ge 0\}$$
,
 $Q_2 = \{(a, b) \in \mathbb{R}^2 : a \le 0 \text{ and } b \ge 0\}$,
 $Q_3 = \{(a, b) \in \mathbb{R}^2 : a \le 0 \text{ and } b \le 0\}$, and
 $Q_4 = \{(a, b) \in \mathbb{R}^2 : a \ge 0 \text{ and } b \le 0\}$.
Is $\{Q_1, Q_2, Q_3, Q_4\}$ a partition of \mathbb{R}^2 ?

* 伊 ト * ヨ ト * ヨ ト - ヨ -

- Let $A = \{ \odot, 2, \pi, \odot \}$. Is $\mathcal{P} = \{ \{2\}, \{\pi\}, \{\odot, \odot\} \}$ a partition of A?
- Let $A = \{ \odot, 2, \pi, \odot \}$. Is $\mathcal{P} = \{ \{2, \pi\}, \emptyset, \{ \odot, \odot, \pi \} \}$ a partition of A?

• Define
$$Q_1 = \{(a, b) \in \mathbb{R}^2 : a \ge 0 \text{ and } b \ge 0\}$$
,
 $Q_2 = \{(a, b) \in \mathbb{R}^2 : a \le 0 \text{ and } b \ge 0\}$,
 $Q_3 = \{(a, b) \in \mathbb{R}^2 : a \le 0 \text{ and } b \le 0\}$, and
 $Q_4 = \{(a, b) \in \mathbb{R}^2 : a \ge 0 \text{ and } b \le 0\}$.
Is $\{Q_1, Q_2, Q_3, Q_4\}$ a partition of \mathbb{R}^2 ?

• Is
$$\{[n, n+1) : n \in \mathbb{Z}\}$$
 a partition of \mathbb{R} ?

* 伊 ト * ヨ ト * ヨ ト - ヨ -

Partitions and Equivalence Classes

By design, equivalence classes form a partition of their set.

• Partitioning \mathbb{Z} into congruence classes modulo k

Partitions and Equivalence Classes

By design, equivalence classes form a partition of their set.

- Partitioning $\mathbb Z$ into congruence classes modulo k
- Define *R* on \mathbb{Z}^2 : (*x*, *y*) *R* (*a*, *b*) iff |x| + |y| = |a| + |b|.

- 「「」 - 「 _ 」 - 「 _ 」 - 「 _ 」 - 「 _ 」 - 「 _ 」 - 「 _ 」 - []

Partitions and Equivalence Classes

By design, equivalence classes form a partition of their set.

- Partitioning \mathbb{Z} into congruence classes modulo k
- Define *R* on \mathbb{Z}^2 : (*x*, *y*) *R* (*a*, *b*) iff |x| + |y| = |a| + |b|.
- Given a partition \mathcal{P} of some set A, define a relation \sim on A by $x \sim y$ iff $\exists S \in \mathcal{P}$ such that $x, y \in S$.

- Define a partition of a set *A* informally and formally.
- Determine whether a specific set *P* is a partition of some specific set *A*.
- Connect the equivalence classes of an equivalence relation on *A* to parts of a partition of *A*.