Big-O

Part b: The Formal Definition

lan Ludden

By the end of this lesson, you will be able to:

By the end of this lesson, you will be able to:

• Define what it means for a function f to be O(g) and $\Theta(g)$, where g is another function.

By the end of this lesson, you will be able to:

- Define what it means for a function f to be O(g) and $\Theta(g)$, where g is another function.
- For specific functions f and g, identify whether f is O(g) and/or $\Theta(g)$.

Definition

Given functions $f, g : \mathbb{N} \to \mathbb{R}$, we say f(n) is O(g(n)) if (and only if)

$$\exists c, k \in \mathbb{R}^+ \ \forall n \geq k, \ 0 \leq f(n) \leq c \cdot g(n).$$

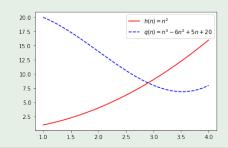
Definition

Given functions $f, g : \mathbb{N} \to \mathbb{R}$, we say f(n) is O(g(n)) if (and only if)

$$\exists c, k \in \mathbb{R}^+ \ \forall n \geq k, \ 0 \leq f(n) \leq c \cdot g(n).$$

Example: Cubic vs. Quadratic

$$h(n) = n^2$$
 versus $q(n) = n^3 - 6n^2 + 5n + 20$


Definition

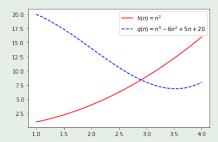
Given functions $f, g : \mathbb{N} \to \mathbb{R}$, we say f(n) is O(g(n)) if (and only if)

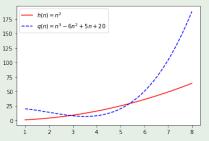
$$\exists c, k \in \mathbb{R}^+ \ \forall n \geq k, \ 0 \leq f(n) \leq c \cdot g(n).$$

Example: Cubic vs. Quadratic

$$h(n) = n^2$$
 versus $q(n) = n^3 - 6n^2 + 5n + 20$

lan Ludden Big-O Part b 3/5


Definition


Given functions $f, g : \mathbb{N} \to \mathbb{R}$, we say f(n) is O(g(n)) if (and only if)

$$\exists c, k \in \mathbb{R}^+ \ \forall n \geq k, \ 0 \leq f(n) \leq c \cdot g(n).$$

Example: Cubic vs. Quadratic

$$h(n) = n^2$$
 versus $q(n) = n^3 - 6n^2 + 5n + 20$

3/5

lan Ludden Big-O Part b

• Big-O is a non-strict partial order (like \leq on \mathbb{R})

- Big-O is a non-strict partial order (like \leq on $\mathbb R$)
- ullet \ll is a strict partial order (like < on $\mathbb R$)

- Big-O is a non-strict partial order (like \leq on \mathbb{R})
- \ll is a strict partial order (like < on \mathbb{R})

- Big-O is a non-strict partial order (like \leq on \mathbb{R})
- \ll is a strict partial order (like < on $\mathbb R$)

Definition

If f(n) is O(g(n)) and g(n) is O(f(n)), then we say f(n) is $\Theta(g(n))$ (and vice versa).

By the end of this lesson, you will be able to:

- Define what it means for a function f to be O(g) and $\Theta(g)$, where g is another function.
- For specific functions f and g, identify whether f is O(g) and/or $\Theta(g)$.