More Recursion Trees

Ian Ludden

Learning Objective

By the end of this lesson, you will be able to:

 Given a recursively defined function, find its closed form by drawing a recursion tree and adding up the work at all levels.

Example 1: Convenient Cancellation

Define $g: \mathbb{Z}^+ \to \mathbb{Z}^+$ as

$$g(1) = 3$$

 $g(n) = 3g(n/3) + 2n \ \forall n \ge 3.$

Find a closed-form for g(n) using a recursion tree. (Assume n is a power of 3.)

Example 1: Convenient Cancellation

Define $g: \mathbb{Z}^+ \to \mathbb{Z}^+$ as

$$g(1) = 3$$

 $g(n) = 3g(n/3) + 2n \ \forall n \ge 3.$

Find a closed-form for g(n) using a recursion tree. (Assume n is a power of 3.)

Level	Input	Total Work
0		
1		
2		
k		
h		

Example 2: Changing the Base Case

Let
$$S=\mathbb{Z}^+-\{1\}$$
, and define $q:S\to\mathbb{Z}$ as
$$q(2)=2$$

$$q(n)=2q(n-1)+5 \ \ \forall n\geq 3.$$

Find a closed-form for q(n) using a recursion tree.

Example 2: Changing the Base Case

Let
$$S = \mathbb{Z}^+ - \{1\}$$
, and define $q: S \to \mathbb{Z}$ as

$$q(2) = 2$$

 $q(n) = 2q(n-1) + 5 \ \forall n \ge 3.$

Find a closed-form for q(n) using a recursion tree.

Level	Input	Total Work
0		
1		
2		
k		
h		

Recap: Learning Objective

By the end of this lesson, you will be able to:

 Given a recursively defined function, find its closed form by drawing a recursion tree and adding up the work at all levels.