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Learning Objective

By the end of this lesson, you will be able to:

• Prove a claim about trees using induction.
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Induction on Trees

What stays the same?

• Need to induct on some integer variable that has a lower
bound

• Need base case(s) and inductive step
• Always use strong I.H.

What’s different?

• Typically induct on h, the height of the tree (rarely, n, the
number of nodes)

• I.H. for a particular value of the variable covers an entire family
of trees

• Always divide tree up at the top (root plus subtrees of its
children)
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A Claim about Full Binary Trees

Claim
Let T be a full binary tree with height h and n nodes. Then n ≥ 2h + 1.

Proof: The proof is by induction on h, the height of the tree.
Base case: When h = 0, the tree is a single node, and
n = 1 ≥ 1 = 2h + 1.
Inductive step: Let k > 0 be an arbitrary natural number.
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Fearsome Trees

Definition
A fearsome tree is a binary tree with each node labeled with a positive
integer, such that:

1 If v is a leaf node, then v is labeled with 4 or 12.

2 If v has two children with labels x and y , then v is labeled with xy − 4.

3 If v has one child, then v has the same label as its only child.

Claim
In every fearsome tree, the root’s label is congruent to 4 (mod 8).

Proof: The proof is by induction on h, the height of the tree.
Base case: When h = 0, the tree is a single node with label 4 or 12. Both
labels are congruent to 4 (mod 8).
Inductive step: Let k > 0 be an arbitrary natural number.
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Recap: Learning Objective

By the end of this lesson, you will be able to:
• Prove a claim about trees using induction.
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