Proving Properties of Relations

lan Ludden

Learning Objectives

By the end of this lesson, you will be able to:

Learning Objectives

By the end of this lesson, you will be able to:

• Prove properties about relations (formally).

Learning Objectives

By the end of this lesson, you will be able to:

- Prove properties about relations (formally).
- Prove a relation is (not) a certain type.

Definition

A relation R on A is **antisymmetric** if for all $x, y \in A$ with $x \neq y$, if $x \in R$, then $y \notin R$.

Definition

A relation R on A is **antisymmetric** if for all $x, y \in A$ with $x \neq y$, if x R y, then $y \not R x$.

Definition

A relation R on A is **antisymmetric** if for all $x, y \in A$, if x R y and y R x, then x = y.

Example

Let $A = \mathbb{R}$, and define a relation R on A as x R y iff $|x| \le y$. Prove R is antisymmetric.

Proving/Disproving Types of Relations

Example

Let $A = \mathbb{R}$, and define a relation R on A as x R y iff $x \le |y|$. Prove/disprove R is a linear order.

Proving/Disproving Types of Relations

Example

Let $A = \mathbb{Z}^2$, and define a relation \blacktriangle on A as

$$(a,b) \blacktriangle (x,y) \text{ iff } a=x \text{ and } b=y.$$

Classify ▲ as a partial order/linear order/strict partial order/equivalence relation/none of these, and prove your answer.

Recap: Learning Objectives

By the end of this lesson, you will be able to:

- Prove properties about relations (formally).
- Prove a relation is (not) a certain type.