Introduction to Relations

lan Ludden

By the end of this lesson, you will be able to:

By the end of this lesson, you will be able to:

• Define a relation on a set and recall the accompanying notation.

By the end of this lesson, you will be able to:

- Define a relation on a set and recall the accompanying notation.
- Represent a relation as a directed graph.

By the end of this lesson, you will be able to:

- Define a relation on a set and recall the accompanying notation.
- Represent a relation as a directed graph.
- Restate the formal definitions of standard relation properties and determine which properties a given relation has.

What is a relation?

Definition

A **relation** R on a (nonempty) set A is a subset of $A \times A$, that is, a set of ordered pairs of elements from A. We write x R y (x relates to y) if $(x, y) \in R$ and x R y (x does not relate to y) otherwise.

What is a relation?

Definition

A **relation** R on a (nonempty) set A is a subset of $A \times A$, that is, a set of ordered pairs of elements from A. We write x R y (x relates to y) if $(x, y) \in R$ and x R y (x does not relate to y) otherwise.

Examples

• $A = \mathbb{Z}$, x R y iff |x| = |y|

What is a relation?

Definition

A **relation** R on a (nonempty) set A is a subset of $A \times A$, that is, a set of ordered pairs of elements from A. We write x R y (x relates to y) if $(x, y) \in R$ and x R y (x does not relate to y) otherwise.

Examples

- $A = \mathbb{Z}$, x R y iff |x| = |y|
- $A = \mathbb{Z}$, $x R y \text{ iff } x \mid y$

• Vertex (a.k.a. node) for each element in A

- Vertex (a.k.a. node) for each element in A
- Edge from x to y iff x R y

- Vertex (a.k.a. node) for each element in A
- Edge from x to y iff x R y

- Vertex (a.k.a. node) for each element in A
- Edge from x to y iff x R y

Examples

• $A = \{a \in \mathbb{N} : a \le 7\}, x R y \text{ iff } x \mid y$

- Vertex (a.k.a. node) for each element in A
- Edge from x to y iff x R y

Examples

- $A = \{a \in \mathbb{N} : a \le 7\}, x R y \text{ iff } x \mid y$
- A =your family, x R y iff x is a child of y

Definition

Reflexive: every element relates to itself.

Definition

Reflexive: every element relates to itself.

Definition

Irreflexive: no element relates to itself.

Definition

Reflexive: every element relates to itself.

Definition

Irreflexive: no element relates to itself.

Definition

Neither: Some elements relate to themselves, but some don't.

Definition

Symmetric: all relationships go both directions.

Definition

Symmetric: all relationships go both directions.

Definition

Antisymmetric: no relationship (between different elements) goes both directions.

Definition

Symmetric: all relationships go both directions.

Definition

Antisymmetric: no relationship (between different elements) goes both directions.

Definition

Neither: Some relationships go both directions, but some don't.

Definition

Transitive: For all $x, y, z \in A$, if x R y and y R z, then x R z.

Definition

Transitive: For all $x, y, z \in A$, if x R y and y R z, then x R z.

Definition

Antitransitive: (optional) For all $x, y, z \in A$, if x R y and y R z, then $x \not R z$.

Definition

Transitive: For all $x, y, z \in A$, if x R y and y R z, then x R z.

Definition

Antitransitive: (optional) For all $x, y, z \in A$, if x R y and y R z, then $x \not R z$.

Definition

Neither: There are some x, y, z satisfying each conditional statement.

By the end of this lesson, you will be able to:

- Define a relation on a set and recall the accompanying notation.
- Represent a relation as a directed graph.
- Restate the formal definitions of standard relation properties and determine which properties a given relation has.